# EFFECT OF DIFFERENT LEVELS OF NITROGEN AND PHOSPHORUS ON THE GROWTH AND YIELD OF BROCCOLI

**MD. ABDUR RASHID** 





| and the second like of the second second                        |
|-----------------------------------------------------------------|
| लिरद्रवाश्मा कॉम विश्वविकालस् गद्दांगीव<br>भरत्याक्वम् मर11(92) |
| MA (a) How                                                      |
| Atturn in 11                                                    |
| 1171. 21. m. 0.501. 0.7                                         |

# DEPARTMENT OF HORTICULTURE AND POSTHARVEST TECHNOLOGY SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207

**JUNE 2006** 

## EFFECT OF DIFFERENT LEVELS OF NITROGEN AND PHOSPHORUS ON THE GROWTH AND YIELD OF BROCCOLI

By

## MD. ABDUR RASHID REGISTRATION NO. 25192/00319

A thesis Submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka in partial fulfillment of the requirements for the degree of

### MASTER OF SCIENCE (M.S.) IN HORTICULTURE

প্রায়েরা কৃষ্টি বিশ্ববিদ্যাল

### **SEMESTER: JANUARY-JUNE 2006**

Approved by:



Prof. A.K.M. Mahtab Uddin Supervisor

Dr. Md. Nazrul Islam Co- supervisor

Dr. Md. Nazrul Islam Chairman Examination Committee

### CERTIFICATE

This is to certify that the thesis entitled, "EFFECT OF DIFFERENT LEVELS OF NTIROGEN AND PHOSPHORUS ON THE GROWTH AND YIELD OF BROCCOLI" submitted to the Faculty of Agriculture, Shere-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN HORTICULTURE, embodies the result of a piece of bona fide research work carried out by MD. ABDUR RASHID, Registration No. 25192/00319 under my supervision and my guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that any help or source of information, received during the course of this investigation has been duly acknowledged.

(Prof. A. K. M. Mahtab Uddin)

Dated:

Dedicated To My Beloved Parents

### ACKNOWLEDGEMENTS

All praise, gratitude and thanks are due to the omniscient, Omnipresent and omnipotent Allah who enabled the author to complete this thesis successfully.

The author express his deepest sense of gratitude, sincere appreciation and immense indeptness to his supervisor Prof. A K M Mahtab uddin, for his guidance, constructive criticism and valuable suggestion in successful completion of the research work and preparation of this thesis. Profound gratitude is expressed to his honorable co-supervisor Associate Prof. Dr. Md. Nazrul Islam for the scholastic guidance and constant inspiration throughout the research work and preparation of this thesis.

He is thankful to Dr. Md. Nazrul Islam, chairman, Dept. of Horticulture and Postharvest Technology, SAU. The author express his cordial and most sincere gratitude to the Vice Chancellor of SAU and Postgraduate Dean of SAU, taking initiative to open the MS courses in Sher-e-Bangla Agricultural University.

The author is highly grateful to Prof. Md. Ruhul Amin and Assistant Prof.Md. Hassanuzzaman Akond, Dept. of Horticulture and Postharvest Technology, SAU.

The author also express his heartfelt thanks to all the teachers of the Dept. of Horticulture and Postharvest Technology, SAU, for their help, valuable suggestions and encouragement during the period of the study. Thanks are extended to his friends Md. Belal Hossain, Mehedi Mohai Men-ur Rahman, Md. Rasedul Islam, Md. Sadat Hossain, Hasanuzzaman, Mamun, Riton, Raju, Zubel and others friends for their help and inspiration. The author wishes to acknowledge his heartfelt in debthness and profound respect to his father Md. Hafiz Uddin and mother Ahema Begum for their sacrifice, blessings, patierce and encouragement and continuous prays for his success. The author express his sincere appreciation to his brother, sisters, relatives, well wishers and friends for their inspiration help and encouragement all time.

The Author

### EFFECT OF DIFFERENT LEVELS OF NITROGEN AND PHOSPHORUS ON THE GROWTH AND YIELD OF BROCCOLI

### ABSTRACT

An experiment was conducted at the Horticulture Farm of Sher-e-Bangla Agricultural University, Dhaka during the period from October 2005 to February 2006. The experiment was conducted in Randomized Complete Block Design (RCBD) with three replications to study the effect of different levels of nitrogen and phosphorus on the growth and yield of broccoli. The growth and yield of broccoli were significantly influenced by the application of different levels of nitrogen. Phosphorus had a little effect on the vegetative growth of broccoli. But some yield contributing characters, such as, length of leaf, number of secondary curd, weight of secondary curd, yield per plot and yield per hectare were significant influenced by the application of different levels of phosphorus. The maximum average yield of 12.36 and 8.75 were obtained when the highest doses of nitrogen (180 kg /ha) and phosphorus (130 kg /ha) were applied independently. Different growth and yield parameters of broccoli were significantly influenced by the combined effect of nitrogen and phosphorus. The interaction effect of nitrogen and phosphorus on length of leaves, plant canopy, diameter of stem, weight of curd, weight of secondary curd nd yield per hectare were found to be statistically significant. The highest average yield (18.53 t/ha) was recorded in the plot receiving 180 kg N/ha and 130 kg P/ha, and the lowest yield (7.86 t/ha) was found from control teatment.

## CONTENTS

| CHAPTER   | TITLE                           | PAGE |
|-----------|---------------------------------|------|
|           | ACKNOWLEDGEMENT                 | V    |
|           | ABSTRACT                        | Vii  |
|           | LIST OF TABLES                  | Xi   |
|           | LIST OF FIGURES                 | Xi   |
|           | LIST OF APPENDICES              | Xii  |
|           | LIST OF ABBREVIATED TERMS       | Xiii |
| CHAPTER 1 | INTRODUCTION                    | 1    |
| CHAPTER 2 | <b>REVIEW OF LITERATURE</b>     | 3    |
| CHAPTER 3 | MATERIALS AND METHODS           | 14   |
| 3.1       | Experimental Site               | 14   |
| 3.2       | Soil Climate                    | 14   |
| 3.3       | Soil                            | 15   |
| 3.4       | Plant Materials                 | 15   |
| 3.5       | Raising of seedlings            | 15   |
| 3.6       | Land preparation                | 16   |
| 3.7       | Treatments of the investigation | 17   |

## CONTENTS (contd.)

| CHAPTER | TITLE                               | PAGE |
|---------|-------------------------------------|------|
| 3.8     | Layout and design of the experiment | 17   |
| 3.9     | Manures and Fertilizer application  | 19   |
| 3.10    | Transplanting and after care        | 19   |
| 3.11    | Gap filling                         | 20   |
| 3.12    | Intercultural operation             | 20   |
| 3.13    | Pest and disease control            | 20   |
| 3.14    | Harvesting                          | 21   |
| 3.15    | Methods of data collection          | 22   |
| 3.16    | Statistical analysis                | 24   |
| 3.17    | Cost and return analysis            | 24   |
|         |                                     |      |

## CONTENTS (contd.)

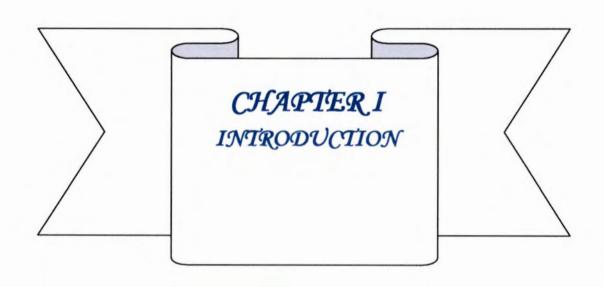
| CHAPTER   | TITLE                             | PAGE  |
|-----------|-----------------------------------|-------|
| CHAPTER 4 | RESULTS AND DISCUSSION            | 25    |
| 4.1       | Plant height                      | 25    |
| 4.2       | Number of leaves per plant        | 30    |
| 4.3       | Length of leaf                    | 30    |
| 4.4       | Diameter of curd                  | 31    |
| 4.5       | Diameter of stem                  | 32    |
| 4.6       | Plant canopy                      | 32    |
| 4.7       | Weight of curd                    | 33    |
| 4.8       | Weight of secondary curd          | 33    |
| 4.9       | Number of secondary curds         | 34    |
| 4.10      | Days required for curd initiation | 35    |
| 4.11      | Yield per plant                   | 36    |
| 4.11      | Yield per plot and per hectare    | 37    |
| 4.12      | Cost and return analysis          | 38    |
| CHAPTER 5 | SUMMARY AND CONCLUSION            | 40-43 |
|           | REFERENCES                        | 44-46 |
|           | APPENDICES                        | 47-53 |

## LIST OF TABLES

| TABLE | TITLE                                                                                    | PAGE  |
|-------|------------------------------------------------------------------------------------------|-------|
| 1.    | Main effect of nitrogen and phosphorus on growth and yield of broccoli                   | 26-27 |
| 2.    | Combined effect of nitrogen and phosphorus on growth and yield of broccoli               | 28-29 |
| 3.    | Cost and return from broccoli as affected by different levels of nitrogen and phosphorus | 39    |

## LIST OF FIGURE

| FIGURE | TITLE | PAGE |
|--------|-------|------|
|        |       |      |


1. Field layout of the experiment in Randomized Complete 18 Block Design (RCBD)

# LIST OF APPENDICES

| APPENDIX | TITLE                                                                                                                                                                  | PAGE  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| I.       | Analysis of variance for plant characters of broccoli                                                                                                                  |       |  |  |
| II.      | Cost of production of broccoli per hectare under 49-50 different treatment combinations                                                                                |       |  |  |
| III.     | Monthly record of temperature, relative humidity,<br>soil temperature and sunshine of the experimental<br>site during the period from October 2005 to February<br>2006 | 51    |  |  |
| IV.      | Horticulture Farm soil analyzed by Soil Resources<br>development Institute (SRDI), Khamarbari,<br>Farmgate, Dhaka.                                                     | 52-53 |  |  |

|  | LIST | OF | ABBR | EVIAT | 'ED ' | TERMS |
|--|------|----|------|-------|-------|-------|
|--|------|----|------|-------|-------|-------|

| FULL NAME                             | ABBREVIATION   |
|---------------------------------------|----------------|
| Agro-Ecological Zone                  | AEZ            |
| And others (at elli)                  | et al.         |
| Bangladesh Bureau of Statistics       | BBS            |
| Centimeter                            | cm             |
| Degree Celsius                        | °C             |
| Duncan's Multiple Range Test          | DMRT           |
| Ton                                   | Т              |
| Date After Transplanting              | DAT            |
| Etcetera                              | etc            |
| Food and Agricultural Organization    | FAO            |
| Gram                                  | g              |
| Hectare                               | ha             |
| Hour                                  | hr             |
| Kilogram                              | kg             |
| Meter                                 | m              |
| Millimeter                            | mm             |
| Month                                 | mo             |
| Murate of Potash                      | MP             |
| Number                                | no.            |
| Percent                               | %              |
| Randomized Complete Block Design      | RCBD           |
| Sher-e-Bangla Agricultural University | SAU            |
| Square meter                          | m <sup>2</sup> |
| Triple Super Phosphate                | TSP            |
| Least significant Difference          | LSD            |

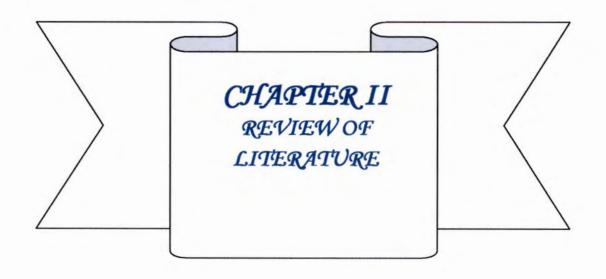


### Chapter I

### Introduction

Broccoli (*Brassica oleracea L.* var. italica plenk) is a member of the cruciferae family. Synonyms are B. *oleracea*, var. botrytis L. Sub var.*cymosa* and common names are sprouting broccoli, culubrese, asparagus broccoli, Italian broccoli and green sprouting broccoli. It is a horticultural hybrid closely related to cauliflower (Nonnecke, 1989). "Broccoli" is an Italian word from the Latin brachium meaning an arm or branch. There are three classes of sprouting broccoli, namely green, white and purple, but the green type is the most popular (Shoemaker, 1962). Broccoli is an important cole crop of Europe and USA, However, in India, broccoli is hardly considered as a commercial crop (Tindall, 1983; Nonnecke, 1989). It is grown a little in Bangladesh during the cool or rabi season. Broccoli is fairly rich in vitamin A and ascorbic acid and contains appreciable amounts of thiamin, riboflavin, niacin, calcium and iron (Thompson and Kelly, 1957; Lincoln, 1987). Analytical data presented by Nonnecke (1989) shows that sprouting broccoli contains more vitamins and minerals than those of other cole crops.

An early and rapid vegetative growth of plant is necessary for quality soft and succulent curd and stem of broccoli, which is believed to be influenced by the application of heterogeneous fertilizers to the soil . Experiments worked out by different researchers have shown that the total yield of the crop is greatly influenced by different doses of nitrogenous fertilizer (Thompson and Kely, 1957; Mital et al.1975; Pieters, 1976) Lincoln (1987) stated that broccoli stressed by inadequate soil nitrogen may develop button heads in which the terminal shoot fails to develop.


Thompson and Kelly (1957) stated that broccoli may need more nitrogen than cauliflower. Mitra *et al.*(1990) in trails with Green Comet hybrid seedlings found that yield , number of inflorescence, chlorophyll content and leaf nitrate reductase activity increased with the increase in nitrogen application from 56 to 112 kg/ha. Mitra *et al.* (1990) reported that increasing N rates from 56 to 224 kg/ha caused linear increase in broccoli head weight and total yield and decrease in cull yield. He obtained increased head weight from 127 to 157 (g) and increased head width from 8.8 to 9.7 cm with increased N rates (135 to 225kg/ha). Application of N and P substantially enhanced the terminal (central curd), lateral (axillary stalks) and total yield of broccoli and higher rates of N were effective when applied in combination with adequate P, while K application had slight but consistent effects on the terminal yield of broccoli (Mitra *et al.* 1990).

The horticulture division of BARI has evaluated a lot number of cultivars of broccoli and conducted experiments on different agronomical aspects (Anon., 1981; Anon., 1982. But little work has been done on fertilizer requirement especially N and P which is important for higher production.

#### **Objectives:**

The present study was undertaken to assess -

- i) the effects of different levels of nitrogen and phosphorus on the growth and yield of broccoli, and
- ii) to find out the optimum levels of the nutrients for profitable production.



# Chapter II Review of literature

Broccoli is a vegetable crop and is grown in rabi season. Its growth and yield is remarkably influenced by mineral nutrition especially nitrogen and phosphorus. Information on this crop is vary scanty in Bangladesh. Some of the pertinent literatures in this regard have been reviewed and presented in this chapter.

Mitra *et al.* (1990) stated that nitrogen application (90 kg/ha) greatly enhanced the yield of broccoli. In Green Comet hybrid seedlings it was found that yield, number of inflorescence, chlorophyII content and leaf nitrate reductase activity increased with the increase in N application from 56 to 224 kg/ha. Increasing N rates from 56 to 224 kg/ha caused linear increase in broccoli head weight and marketable yield and decrease in cull yield. It is also reported that orthogonal comparisons of N rates effects with held constant, orthogonal comparisons of population effects with N rate held constant. Mitra *et al.* (1990) observed higher head yield by application of N at 225kg/ha as conventional preplant and side dressing than by injecting N in the irrigation water. Higher incidence of hollow stem was recorded with the increasing rates of N application.

It was also reported that increasing nitrogen rates (135 to 225 kg/ha) increased head weight from 127 to 159, increased head width from 8.0 to 9.7 cm, increased length and width of hollow stem, but did not significantly increase the incidence of hollow stem. They also reported that the increase in total chlorophyII content was resulted from increasing rates of N application (225kg/ha).

It was reported that, increasing rates of N from 150 to 300 kg/ha gave higher yield, but decreased sugar and dry matter contents. However, the external quality of the curd and ascorbic acid content was not affected by the rates of N.

Mitra *et al.*(1990) also described higher yield of curd following application of N at the rate of 150 to 250 kg/ha Roy (1981) reported an increased curd diameter from 15.1 - 20.2 cm and yields from 108.3-2614 kg/ha by increasing the levels of N from 50-200kg/ha in a period of 3 years with cv. Dania. He, however, suggested 100kg/N ha as the most economical N rate which gave a yield of 251 kg/ha, the diameter of curds being 20 cm.

Mitra *et al.* (1990) stated that a yield of 51.5 tons/ha was obtained by applying nitrogen, phosphorous and potassium at the rate of 100, 50 and 50 kg/ha, respectively, compared with 33.5 tones/ha with 50 kg N, 25 kg P and 25 kg K/ha.

Magnifico *et al.* (1979) carried out a fertilizer experiment on growth and nutrient removed by broccoli in the United States of America and found that broccoli plants removed 559 kg N, 23 kg  $P_2O_5$  and 723 kg  $K_2O$ /ha. The total yields were 1,48,400 kg/ha fresh materials and 16,900 kg/ha of dry matter.

El-Behedi and El-Nansi (1975) conducted an experiment on the effect of nitrogen level and spacing on broccoli yield. The crop was planted at 50, 70 and 90 cm in the row and supplied with N at 0,20,40 and 60 kg. The highest N rate increased the total and early yields.

Thompson and Kelly (1957) indicated that broccoli may need more nitrogen than cauliflower, especially late in the growing season. A highly of side shoots can be obtained by liberal side –dressing of nitrogen after the central head is cut.

Rajput and Singh (1975) carried out an experiment in India and obtained higher head yield and increase in growth with the increasing rates of N application. Application of 60 kg N/ha as basal dose followed by two to dressings with 30 kg N/ha each showed marked results related to yield of broccoli. The results of foliar application were inferior to other methods of application.

In a 3 year trial conducted by Peiters (1976) at several places, sprouting broccoli received a basic dressing of N at 50 kg/ha supplemented by further incremental doses totaling 250 kg/ha, applied 1,3 and 4.5 months after planting. The highest yield were obtained with a total application of 300kgN/ha, a high proportion of the supplementary doses being applied early.

Lincoln (1987) reported that broccoli stressed with inadequate soil nitrogen may develop button heads in which the terminal shoot fails to develop. He also reported that substantial increases in growth rate take place during the transition to reproductive growth and as the terminal head nears maturity. Fertilization practices must ensure adequate nutrients, excessive nitrogen must be avoided it can increase the incidence of hollow stem.

Lewandowaska and Shakpski (1977) conducted a series experiments on broccoli to investigate into the effect of variety, spacing and levels of nitrogen fertilization on the quality and yield. In their studies with broccoli cultivars, the plants were planted at a density of 9, 7, 5, 4.5 and  $3 / m^2$  and supplied with N at the rate of 100,200 and 300 kg/ha and PK basal dressing. The total and marketable yields increased with plant density from 3 to 9 plants per m<sup>2</sup>.

Mital *et al.* (1975) observed the response of broccoli to nitrogen and row spacing in India. In a 2- year trial, the effects of N at the rate of 40, 80 and 120 kg/ha and row

spacing of 30, 45 and 60 cm were obtained . Yield was the highest with 80kg N/ha and 45 cm row spacing. Curtliffe (1975) reported that raising N application from 89.7 to 269.1 kg/ha greatly increased the incidence of hollow stem (30-60%).

Simon (1976) conducted an experiment on the effects of gradual incremental rates of nitrogen and irrigation on the yield of broccoli. He observed that N application had a greater effect on yields than irrigation. Raising N rates increased yields and earliness proportionately.

Mathur *et al.*(1976) observed in their experiments conducted in India on the effect of different spacing-cum-nitrogen doses on the yield of broccoli that, plants spaced at 45 x 45,61 x 61 and 76 x 76 cm yielded 14317,10331 and 8077 kg /ha respectively. They also reported that the response of plants to N in the range of 50-150 kg/ha was found to be insignificant.

The vegetables section of BARI (Annon, 1981) conducted an experiment to observe the response of different levels of nitrogen on the growth and yield of broccoli and found the best yields by increasing the rate of nitrogen application up to a certain limit.

Broccoli cv.Appollo produced average individual head weight of 0.87 lb by the application of N, P and K at the rate of 300, 100 and 150 kg/ha, respectively as mentioned by Mitra *et al.*(1990).

Rajput and Singh (1975) suggested application of N at 60 kg/ha as a basal dose followed by top dressing with 30 kg N, 30 and 40 days after transplanting for cauliflower cv. Snowball -16.

6

Sharma and Arora (1984) in a trial with cv. Improved Japanese reported increased day matter yield and curd yield by increasing the nitrogen level from 0 to 180 kg/ha. Application of half dose of N at transplanting and the rest 40 days later showed higher yield than application of the entire dose of fertilizer at transplanting.

Steffen *et al.*(1994) carried out an experiment, on short –term and log-term impact of an initial large scale spent mushroom soil (SMS) amendment on vegetable crop productivity and resource use efficiency at Pennsylvania University,USA. They observed the effect of organic matter ( spent mushroom compost at 64 mt/ha+ rotten cattle manure at 57 mt/ha, applied in spring 1990 on growth and yield of broccoli. No fertilizer or other amendments were added to previously amended treatments, but 100% recommended NPK was added to all control treatments in all years. Broccoli yield and head diameter were greater in the amended treatment.

Maynard (1994) conducted an experiment on sustained vegetable production for three years using composted animal manures. Intensive broccoli production trails in spring summer and autumn were conducted for 3 years in Connecticut Windsor (Sandy trac soil) and Mt. Carmel (loamy upland soil) following annual application of spent mushroom compost (SMC) or chicken manure compost (CMC) applied at either 56 or 112 t/ha as the sole source of nutrients. Yields of broccoli from these amended plots were compared with yields from control plots receiving NPK fertilizer. Yields of broccoli increased with the rate of compost. Compost analysis and broccoli yields are tabulated. The average yields of spring broccoli and autumn broccoli on all CMC – amended plots at both rates and sites in all three years, were equal to or greater than yields from the control plots.

Bracy *et al.*(1995) reported that field trails were conducted on direct –sown broccoli cv. Early (Dawn) during the autumn of 1991 and 1992. The effects of preplanting NPK fertilizer at a rate of 45 kg N + 59 kg P + 112 kg K and 90 kg N + 118 kg P + 118 kg P + 224 kg /ha plus side dressed N fertilizer at 134, 196 or 258 kg/ha, either dropped onto or knifed into the bed were determined. The marketable yield, early yield, head weight and percentage of early to total yield were unaffected by fertilizer rate or method of application.

Brown et al (1994) in a field experiment on sandy loam soil in 1988- 89 at Crossville , Alabama applied 20 or 40 t/ha broiler litter or recommended NPK fertilizer in Sweet corn cv. Silver queen matured 1 week earlier in both years with 40 t broiler litter than with NPK fertilizer. This was related to improved P. nutrition.

Megnifico-v. *et al.*(1993) conducted a field trial on a silty clay soil at Policoro (Madtera) from January 1976 to September 1980 with broccoli, spinach, snap beans and picking cucumbers grown in rotation comparing 12 NPK fertilizer rates and 3 herbicides (For each crop). Trifulralin, Chlorthal [-dimethy1] and Nitrofen were used on broccoli; Lenacil, Cycloate and Chlorbufam + Cycluron were applied on Spinach ; Trifluralin Alachlor and Nitrogen were applied on snap beans ; and Trifuralin, Chlorthal and Asulam were applied on cucumbers. Over the 5 years, 17 crops were grown : 4 of broccoli , 3 of spinach, 5 of snap beans and 5 of cucumber. An average of 94 days were needed for broccoli , 85 for spinach, 65 for beans and 58 for cucumber , a total of 302 days/ year/ The effects of sowing / transplanting dates and harvesting and the residual effects of herbicides were examined . Yields of each species varied widely and were mainly influenced by fertilizer rates and not herbicides. Cucumber was the only crop to show phytotoxicity from herbicides used

earlier on spinach. It was concluded that this intensive system could not be recommended to farmers since it required very careful planning and yields depended on a number of contingencies.

Demchak and Smith (1990) reported from field experiments conducted at Rock Springs. Prnnsyvania, Broccoli, cv. Green Comet was grown on plots to which 3 types of lime ( calcitic lime, a 3 : 1 ratio of calcistic : dolomitle lime, or dolomitic lime) had been applied at 4.5t/ha in 1972,1974 and 1978, and 56 kg N+ 56 kg P, 56 kg N + 56 KgN + 112 kg P + 56 kg N + 112 kg P + 56 kg N/ha were applied in bands 10cm to the side of plants and at depth of 10 cm. Fertilizer and lime control were included . Previous liming had raised the soil  $P^{H}$  from 5.3 to 7.2 – 7.4. The effects of liming on yields were greatest when on fertilizer was applied. Diplomatic lime was the most effective liming metrical increasing total yield by 49 %, terminal shoot weights by 54% and hastening maturity. Fertilizer effects were most evident when no lime had been applied with all fertilizer treatments increasing total yield, terminal shoot and plant weight, and hastening maturity. There were no significant differences between the 3 fertilizer treatments with respect to those of fertilizer when lime had been applied were less consistent. Lime alone, especially types containing My increased leaf P content, which generally followed the same trend as total yield. Calcites lime increased leaf Ca content and dolomites lime increased leaf Mg content compared with other lime treatments. The 3: 1 calcites : dolomites lime treatment increased leaf Ca content but not leaf content compared with the control. All lime treatments decreased leaf Men, B and Zn contents. Fertilizer treatments usually increased leaf N and MP contents. P uptake was increased by either lime or fertilizer application. Regression analysis strongly suggested that P was the element most responsible for yield increases.

Sumiati (1988) stated that seedlings of broccoli cultivars Green King and Mikado were transplanted into Jiffy posts or into a 1 : 1 mixture of stable manure and soil supplemented or not supplemented with NPK compound fertilizer (15: 15: 15) and /or Metallic . There are no differences between cultivars in plant height, root length, LAI NAR and RGR at 2.3 or 4 weeks after transplanting . These factors were all highest at all stages in plants grown in manure + soil supplemented with NPK + Metallic and were generally lowest in plants grown in Jiffy pots. Interactions between cultivars and treatments on LAI, NAR and K uptake at 4 weeks after transplanting were noted.

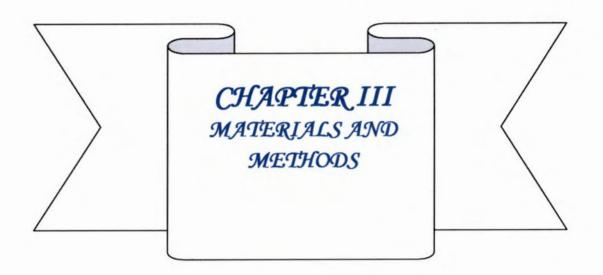
Burghardt and Ellering (1986) observed that under sub-optimal total nutrient supply, a foliar fertilizer (12 N: 4 p : 6 K) at concentrations up to 15% was tolerated, without leaf damage by dwarf beans, carrots, beetroods, endives, broccoli, leeks and white cabbages. These concentrations were equivalent to > 100 kg N / ha. Plant development and leaf color improved and yields increased by 12 to 74%. Crop quality was unchanged in most crops by foliar spraying, but it improved in beetroots and leeks. Leaf nitrate content was little affected by foliar spraying.

Simoes et al (1993) reported that nursery an field trails were conducted on broccoli cv. Green Duke to investigate the effects of container size and substance on transplant growth and subsequent field performance. In the nursery the variables analyzed were plant height, leaf dry weight and leaf area per plant. In the field, the final yield the number of plants with heads, and the marketable yield at 2 different harvest dates were assessed. It was found that containers 21-31 mm wide and 71-75 mm deep, in combination with rich substrates (180-210mg N 120-240 mg P2O5 and 220-270 mg  $K_{20}$ /litre) produced the best results.

Santamaria –P et al. (1994) in a crop rotation (spinach/beans/broccoli), begun in 1976 at Policoro, observed the effects of applying 100 or 200 kg N/ha and triflurain, chlorthal- dimethyl or oxfluorfen or broccoli cultivars X PH 4142 and 89006 in 1991. Trifluralin and oxyfluorfen were applied at 2 litres/ha and chlorthal dimethyl at 15 litres/ha. Comparsion was made with an unwedded control. Growth was at a maximum when the central head was almost ready for harvesting. Yield and central head quality were higher at the higher N rate. Chlorothal-dimethyl adversely affected both yield and quality at the lower N rate. Trifluralin and oxyflorfen had no adverse effect on yields.

Liu and Shelp (1993) reported a three year study conducted with field-grown broccoli ( cultivars Emperor, Baccus and Commander, differing between trails) under different management regimes, i.e various NH4 + : NO3- ratios the addition of the nitrification inhibitor nitrapyrin, and B nutrition (rates and application methods) None of the treatments influenced the harvestable yield or the N composition I NO<sub>3</sub>- NH<sub>4</sub> +, amino acids and protein) in xylem and phloem saps and plant tissue. The total N and the mol% NH4 + in the xylem diminished over the growing season. NH4 + constituted up to 20% of the N in the xylem, suggesting that this from of N as well as NO<sub>3</sub>- was absorbed from the soil. The substantial recovery of NO<sub>3</sub>- in xylem sap (30-70% N) indicated that, with an adequate supply of N, at least part of the incoming NO3- was reduced in the shoot tissue. Concentrations of all N components in the tissues declined as growth advanced, from the base to top of the: hoot. The concentrations of NO<sub>3</sub>- in the florets ranged from to 154 mg N /kg.fresh weight, and were considered to be beneath the permissible maximum levels by European standards, whereas some of these in the foliage exceeded the permissible levels. There were significant cultivar differences in NO<sub>3</sub>- accumulation within and between the study sites. The B

concentrations in the florets ranged from 29 to 42 mg / kg dry weight even when no B was applied to the plants, the values being generally considered as adequate.


Magnifico et al. (1989) reported the growth and accumulation of macro- and micro elements in various stages of the cultural cycle of 2 cultivars of broccoli in Southern Italy. Plant samples were obtained every 2 weeks beginning at the time of thinning and contenting for 112 and 126 days, respectively, for cultivars Dig Geniis and Did Mario. Despite the different cultural recycle, the cultivars were similar in yield and element uptake. On a per hectare basis the plants removed about 460 kg N,140 kg P<sub>2</sub>O<sub>5</sub>, 692 kg K<sub>2</sub>O,330 kg ca, 75 kgNa, and 42kg Mg. Microelement removal by Die Gennaio was 77kg S, 20 kg Al, 12kg Fe,1 kg Mn,479g Zn, 443 g So, 411 g B,72g Cu, 26g Mo, 23 Ni, and 20gCa. Total growth averaged 136 t/ha fresh material, which included 14 t/ha of main heads, 28 t/ha of secondary heads, and 14 t/ha day matter. The highest removal rates were recorded from flower stem emission to main head production.

Tremblay (1989) reported the effects of N source and rate on *Brassica oleracea* sp. Italic cv. Green Valiant in 2 years and on 2 soils. NH4 NO3, Ca (NO2)2, (NH4 )SO4 and Co(NO2)2 were side- dressed in a factorial in a arrangement with N rates of 75, 150 and 225kg/ha. Increasing N rates resulted in resulted in greater vegetative growth but also in hollower stem development. In a swarm dry year, however, on a soil of near optimal pH, hollow stem development increased more with N rate than did marketable yield. In such conditions therefore, it was suggested to reduce N application. Nitrate congaing sources increased yields by 4% but induced 13% more hollow stem, and no N source produced high yields with minimum hollow stem. The

effect of N source was not a function of year or N rate; it would not therefore be advantageous to modify N rate according to N source.

Kowalenko (1983) stated that head yield increased linearly in response to up to 250kg N/ha without preferentially increasing vegetative growth. The maximum yields from nitrogen application had probably not been attained.

Letey et al. (1983) reported that two furrow irrigation experiments were conducted with the cv. Green Comet. The first consisted of 3 n rates 990, 180 and 270kg/ha), 2 irrigation treatments 9replenishment of water lost by evapotranspiration and evapotranspiration plus 30%) and 2 N application 9 to the soil or in the irrigation water). Plant growth increased with rising n rates. For a given N application, the average production was higher with the lesser amount of water. N application method had very little effect on production under low irrigating level but production was consistently higher for N application with water than to the soil at the high irrigation level. The ratio of N in the plant to N applied decreased with increasing N rate, with higher water application, and with N application in the irrigating water compared with soil application. The seconded experiment consisted of 2 N rates (115 and 225kg/ha) and 2 N application methods 9 to the soil or in the irrigation water). Yield and N uptake were significantly higher with the higher n rate. Conventional pre-plant and side-dressing application to the soil resulted in significantly higher broccoli yield than injecting N into the irrigating water. Leaching of N was not a factor under the experimental conditions reported.



# CHAPTER III MATERIALS AND METHODS

Broccoli & cauliflower are cole crop and are commonly grown in the winter in Bangladesh. Cauliflower is a tasty & very much popular vegetable, being cultivated in large scale during growing period. Broccoli is also a tasty vegetable with an important source of vitamins and minerals. In Bangladesh, broccoli is being grown in a very limited scale, but a good deal of interest has been generated among for raising this crop due to its demand in foregin markets. It is necessary to explore the possibilities of growing broccoli in order to raise it yield level. So, this experiment has undertaken to find out appropriate or optimum nutrient supliment for exploiting the yield potential of this crops.

### 3.1 Experimental Site

The experiment was conducted at the Horticulture Farm of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, during the period from September 2005 to February 2006. The experimental site was previously used as vegetable garden and recently developed for research work. The location of the site is 23° 74 N latitude and 90° 35 E longitude with an elevation of 8.2 meter from sea level (Anon 1981).

### 3.2 Climate

The climate of the experimental site is subtropical, characterized by heavy rainfall during the months from April to September (Kharif season) and scanty rainfall during the rest of the year (Rabi season). The total rainfall of the experimental site was 218 mm during the period of the experiment. The average maximum and the minimum temperature were 29.45°C and 13.86° C respectively during the experimental period. Rabi season is characterized by plenty of sunshine. The maximum and minimum temperature, humidity rainfall and soil temperature during the study period were collected from the Bangladesh Meteorological Department (climate division) and have been presented Appendix v.

### 3.3 Soil

The soil of the experimental area belongs to the Modhupur Tract. The analytical data of the soil sample collected from the experimental area were determined in the SRDI, Soil Testing Laboratory, Khamarbari, Dhaka have been presented in appendix II.

The experimental site was a medium high land and pH of the soil was 5.6. The morphological characters of soil of the experimental plots as indicated by FAO (1988) are given below –

AEZ No. 28 Soil series – Tejgaon

General soil- Non-calcarious dark grey.

### **3.4 Plant Materials**

Broccoli cultivar, Satomiduri (Takki company of Japan) was used in the experiment.

### 3.5 Raising of seedlings

For raising of seedlings, the soil was ploughed and converted into loose friable and dried messes were removed. All weeds, stubles and dead roots were removed. Cowdung manures was applied to the prepared seed beds at the rate of 10 t/ha.

The seeds were sown in the seed beds of 2.5m x 1m size on 16 October 2005. After sowing, the seeds were covered with a thin layer of soil. When the seeds were germinated, shade by bamboo mat (Chatai) was provided to protect the young seedlings for scorching sun-shine and rain. Light watering, weeding and mulching were done as and when necessary. No chemical fertilizers were applied for raising of the seedlings. Seedlings were not attacked by any kind of insects or diseases.

The healthy 21 days old seeldings were transplanted in the experimental field on 6 November 2005.

### 3.6 Land preparation

The experimental plot was opened first on the 2<sup>nd</sup> week of October 2005 by a power tiller for growing the desired crop. It was then throughly prepared by ploughing and cross ploughing several times with a power tiller followed by laddering to bring about a good tilth suitable for establishing the seedlings. Then the land was leveled and the corners of the experimental plot were shaped and the clods were broken into pieces. The land was cleaned of weeds and stables and was finally leveled. The soil was treated with insecticides when the plot was finally ploughed. Insecticide (Miral) was used @ 4 Kg/ha to protect the young plants from the attack of inhabiting insects. The planting pits were made 5 days before planting.

### 3.7 Treatments of the investigation

The experiment was undertaken to study the effects of 4 different levels of N and 4 different levels of P on the growth and yield of broccoli. Thus the experiments included two factors as follows :

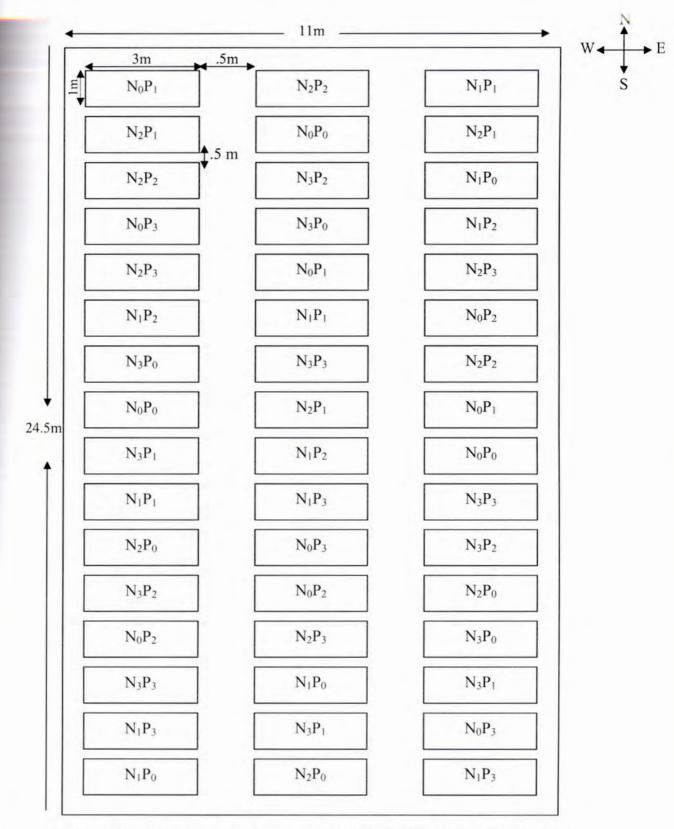
### A. Levels of nitrogen

1) 0 Kg of nitrogen (N)/ ha, coded as No
 2) 80 Kg of nitrogen / ha, coded as N<sub>1</sub>
 3) 130 Kg of nitrogen / ha, coded as N<sub>2</sub>
 4) 180 Kg of nitrogen / ha, coded as N<sub>3</sub>

### **B.** Levels of phosphorus

1) 0 Kg of phosphorus (P) / ha, coded as Po

2) 70 Kg of phosphorus (P) / ha, coded as P


3) 100 Kg of phosphorus (P) / ha, coded as P.

4) 130 Kg of phosphorus (P) / ha, coded as P,

Thus there were 16 treatment combinations.

#### 3.8 Experimental design and layout

The two factors experiment was laid out following Randomized Complete Block Desgin (RCBD) with three replications on 1 November 2005. The experimental plot was first divided into three blocks. Each block consisted of 16 plots. Thus the total number of plots were 48. Different combinations of nitrogen and phosphorus were



Number of treatment combinatin = 16, Unit Plot size =  $1m \times 3m$ , Plot Spacing = 0.5m, between replication = 0.5m

Fig. Field layout of the experiment in Randomized Complete Block Design (RCBD)

assigned to each block as per design of the experiment. The size of a unit plot was  $1m \times 3m$ . Both the plots and blocks distance were .05 m. Thus the total area of the experiment was 269.5 square meter.

#### 3.9 Application of manures and fertilizers

Urea, triple superphosphate (TSP) and muriate of potash (MP) were applied as the sources of nitrogen, phosphate and potash, respectively. Well-decomposed cowding @ 20 t/ha and MP @200 Kg /ha were applied to the plots (Rashid, 1993).

Two thirds of each amounts of well-decomposed cowding and TSP were applied just after opening the land and the remaining one third of cowdung and tripple super phosphate were applied in small pits prepared before 5 days of transplanting of seedlings, and were troughly mixed with the soil. Urea and MP were applied in two instalments. One third of urea and muriate of npotash was applied in ring method after 21 days of transplanting. One third was applied after 42 days, and the rest of urea and MP were applied after 60 days of transplanting. Irrigation was done just after ferterlizer application.

### 3.10 Transplanting and after care

Healthy 21 days old seedlings were transplanted on 6th november, 2005 in the afternoon and light irrigation was given around each seedlings for their better establishment. The transplanted seedlings were protected from scorching sunlight by providing shed using banana leaf sheth. Dead seedlings were replaced by new healthy seedlings from same stock.

### 3.11 Gap filing

Dead, injured and weak seedlings were replaced by new vigour seedling from the stock kept on the border line of the experiment.

### 3.12 Intercultural operation

#### 3.12.1 Weeding

A large number of weeds were found in the control treatment. Weeding was done three times in each plot where it was necessary.

### 3.12.2 Irrigation

Light irrigation was given just after transplanting the seedlings. A week after transplanting the requrement of irrigation was envisaged through visual estimation. Wherever the plants of a plot had shown the symptoms of wilting the plots were irrigated on the same day with a hosepipe until the entire plot was properly wet.

### 3.13 Pest and control

Few plants were damaged by mole crickets and cut worms after the seedlings were transplanted in the experiment plots. Cut worms were controlled both mechanically spraying Diazinon 50 EC @ 0.55 Kg per hectare. Some of the plants were infected by *Alternaria brassicae*. To prevent the spread of the disease Rovral @ 2g / liter of water sprayed in the field. Bird pests such as Nightingale (Common Bulbuli) visited the fields from 8 to 11 a.m. and 4 to 6 p.m. The birds were founds to puncture the soft leaves and initiating curd and were controlled by striking of a metalic container.

#### 3.14 Harvesting

Sprouting broccoli does not usually mature uniformly. Because curd initiation curd maturation period in different plants are not similar probably due to genetic or other factors. That is why, harvesting was not possible on a certain date. Firstly the central head was harvested whwn the plants formed compact curd. After harvesting the main head, secondary shootswere developed from the lesf axils which also developed into small secondary heads and were harvested over a period of time. Harvesting was started on 26 Decmber 2005, 52 days after transplanting and was completed on 14 February 2006 when the experiment was terminated. The heads were harvested with 20 cm of stem attached with sprouts.

#### 3.15 Methods of Data collection

The data pertaining to following characters were recorded from ten (10) plants randomly selected from each unit plot, except yield of curds which was recorded plot wise. Data on plant height was collected on 10, 20, 30 and 40 days after transplanting and also at harvest. All other parameters were recorded at harvest.

#### Data were collected on the following parameters :

1. Height of plant

- 2. Number of leaves per plant
- 3.Length of leaf
- 4. Diameter of curd

5. Diameter of stem

#### 6. Plant canopy

7. Weight of curd

8. Weight of secondary curd

9. Number of secondary curd

10. Days required for curd initiation

11. Yield per plant

12. Yield per unit plot

13. Yield per hectare

## 3.15.1 Plant height (cm)

Plant height was measured in centimeter (cm) by a meter scale at 10,20, 30, 40 days after transplanting (DAT) and at harvest from the ground level up to the tip of the longest leaf.

# 3.15.2 Number of leaves per plant

Total number of leaves produced per plant was counted at harvest excluding the small leaves and the leaves produce axillary shoots.

#### 3.15.3 Length of leaf

A meter scale was used to mesure the length of leaves. The length of the leaf was mesured from the base of the petiole to the tip. The data was measured after the harvesting of curd.

## 3.15.4 Diameter of curd

Curd diameter was taken by using a meter scale. Diameter of the curd measured at different directions and finally the average of all direction was recorded.

## 3.15.5 Diameter of stem

When the central curd reached mature and merketable stage then the head was cut off and at that point the diameter of the stem was measured. The diameter of stem was recorded in three dimensions and the average of the three figures was taken into account.

#### 3.15.6 Plant canopy

Plant canopy was measured by taking the diameter of the canopy of an individual plant at different directions and finally the average was taken.

## 3.15.7 Weight of curd

Weight of the central curd was recorded excluding the weight of all secondary marketable curds.

## 3.15.8 Weight of secondary curd

Weight of secondary curd was recorded by weighing the total marketable axillary curds of an individual plant.

## 3.15.9 Number of secondary curds

When the secondary curds reached marketable size. They were counted; the small shoots were not taken into consideration.

# 3.15.10 Days required for curd initiation

Total number of days from the date of transplanting of the date of visible curd initiation.

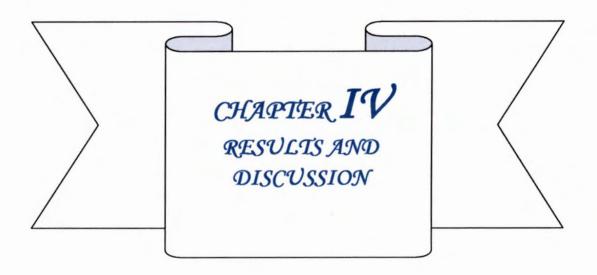
## 3.15.11 Yield per plant

The yield per plant was calculated by averaging the weight of ten randomly harvested curds and secondary curds.

#### 3.15.12 Yield per unit plot

The yield per unit plot was calculated by adding the yields of all plants of each unit plot (kg/plot).

## 3.15.13 Yield per hectare


The yield per hectare was calculated from per plot yield data.

## 3.16 Statistical analysis

The data obtained from the characters were statistically analyzed to find out the variation resulting from experimental treatments following F variance test. The difference between treatments were adjudged Duncan New Multiple Range Test (DMRT) (Gomez and Gomez, 1984).

#### 3.17 Cost and analysis

Cost and return analysis was done in details following the procedure of Alam et al. (1989).



# **CHAPTER IV**

# **RESULTS AND DISCUSSION**

The experiment was consisted of different levels of nitrogen and phosphorus and was designed to find out their individual and combined effects on growth and yield of broccoli. The results of the experiment are presented in Tables 1 to 2. The analysis of variance for different characters are presented in appendices 1.

#### Height of plant

×

(20) 22

Application of nitrogen exhibited a significant influence on the height of broccoli. Plants on different dates after transplanting (Table 1). In all dates of observations, the height of plant increased with higher levels of N application. At 10, 20 and 30 DAT, N<sub>2</sub> (130 kg N/ha) treatment produced significantly higher plant height than N<sub>1</sub> (80 kg N/ha) treatment; but N<sub>2</sub> (130 kg N/ha) and N<sub>3</sub> (180 kg N/ha) produced plants of similar height. At 40 DAT, the highest value was recorded at N<sub>3</sub> (44.11cm), while the lowest figure (40.13cm) was recorded in control treatment. At harvest, the highest height was recorded with N<sub>3</sub> (50.50cm), and the lowest was recorded in control (40.65).

This increase in plant height due to higher N application was probably caused by enhanced mitotic activity that resulted in higher plant height.

It appeared from Table that plant height did not differ significantly in any of the stages due to the application of different levels of phosphorus. The highest value was recorded in P<sub>0</sub> treatment (42.19 cm) and the lowest value was found in P<sub>1</sub> treatment at 40 DAT. The plant height was significantly influenced by the treatment combinations of N and P at different days after transplanting (Table 2). The highest plant height was observed in the N<sub>3</sub>P<sub>3</sub> treatment (180 kg Nx130 kg P/ha) in all dates of observation except 30 DAT.(Table 2).

| Treatments            | Plant he | eight at di   | Plant height at different DAT (cm) | T (cm) |            | Number of    | Length of leaves(cm) | Plant canopy(cm <sup>2</sup> ) | Days required for |
|-----------------------|----------|---------------|------------------------------------|--------|------------|--------------|----------------------|--------------------------------|-------------------|
|                       | 10       | 20            | 30                                 | 40     | At harvest | leaves/plant |                      |                                | curd initiation   |
| Factor A : Nitrogen   |          |               |                                    |        |            |              |                      |                                |                   |
| No                    | 14.18b   | 22.01c        | 22.01c 30.94c                      | 40.12b | 40.65b     | 14.25b       | 30.22c               | 65.62b                         | 60.00a            |
| N                     | 18.29a   | 25.84a        | 35.89b                             | 41.21b | 41.73b     | 16.00a       | 34.24b               | 74.20c                         | 61.08a            |
| N <sub>2</sub>        | 18.55a   | 18.55a 26.12a | 37.74a                             | 42.61a | 44.95a     | 17.08a       | 35.84b               | 80.82b                         | 59.34a            |
| N <sub>3</sub>        | 17.54a   | 24.38b        | 17.54a 24.38b 38.74a 44.11a        | 44.11a | 50.49a     | 16.33a       | 38.70a               | 88.10a                         | 59.60a            |
| Factor B : Phosphorus | S        |               |                                    |        |            |              |                      |                                |                   |
| Po                    | 16.47b   | 23.25b        | 16.47b 23.25b 35.91a               | 42.19a | 44.21a     | 16.16a       | 34.12a               | 76.29a                         | 61.00a            |
| P                     | 16.21b   | 24.27a        | 16.21b 24.27a 36.09a               | 41.75a | 44.13a     | 16.58a       | 34.11a               | 75.75a                         | 59.36a            |
| $P_2$                 | 17.21b   | 25.15a        | 25.15a 35.60a                      | 42.11a | 44.74a     | 15.75a       | 35.78a               | 77.79a                         | 59.67a            |
| P.3                   | 18.68a   |               | 25.67a 35.69a                      | 42.00a | 44.74a     | 15.16a       | 34.93a               | 78.92a                         | 60.00a            |

Table 1. Main effect of Nitrogen and phosphorus on plant height, number of leaves per plant, length of leaves, plant canopy, days required to curd initiation

Table 1(contd.). Main effect of Nitrogen and Phosphorus on stem diameter, curd diameter, curd weight, no. of secondary curds

| Treatments           | Diameter of Stem (cm) | Diameter of curd (cm) | Weight of curd (g) | No. of secondary curds |
|----------------------|-----------------------|-----------------------|--------------------|------------------------|
| Factor A: Nitrogen   |                       |                       |                    |                        |
| No                   | 1.83c                 | 7.03d                 | 136.4c             | 5.43b                  |
| N,                   | 2.47b                 | 8.73c                 | 140.3c             | 5.99b                  |
| N <sub>2</sub>       | 2.57b                 | 9.78b                 | 150.4b             | 5.75b                  |
| N <sub>3</sub>       | 3.24a                 | 11.26a                | 200.2a             | 7.39a                  |
| Factor B: Phosphorus |                       |                       |                    |                        |
| P <sub>0</sub>       | 2.57a                 | 8.86a                 | 148.5c             | 5.60b                  |
| P                    | 2.44a                 | 9.32a                 | 154.4b             | 6.06b                  |
| P <sub>2</sub>       | 2.64a                 | 9.48a                 | 157.4b             | 6.42a                  |
| P,                   | 2.46a                 | 9.14a                 | 167.0a             | 6.48a                  |

Table 1 (Contd.). Main effect of Nitrogen and Phosphorus on secondary curd weight, yield /plant, yield /unit plot and yield

| Treatments           | Weight of secondary curd (g) | Yield /Plant (g) | Yield / unit plot (kg) | Yield (t/ha) |
|----------------------|------------------------------|------------------|------------------------|--------------|
| Factor A: Nitrogen   |                              |                  |                        |              |
| No                   | 75.27d                       | 202.0d           | 2.41d                  | 8.03c        |
| N                    | 84.19c                       | 212.4c           | 2.54c                  | 8.465c       |
| N <sub>2</sub>       | 115.1b                       | 277.8b           | 3.32b                  | 11.06b       |
| N <sub>3</sub>       | 177.2a                       | 437.8a           | 5.23a                  | 17.43a       |
| Factor B: Phosphorus |                              |                  |                        |              |
| P <sub>0</sub>       | 96.11c                       | 264.8c           | 3.17c                  | 10.56c       |
| P                    | 103.3b                       | 275.9b           | 3.30b                  | 11.00b       |
| P <sub>2</sub>       | 125.3a                       | 285.1b           | 3.40b                  | 11.33b       |
| P                    | 127.0a                       | 304.0a           | 3.64a                  | 12.13a       |

| Treatment combination         | Plant heigh<br>10 | Plant height at different DAT     10   20   30 | DAT<br>30 | 40       | Harvest  | Number of<br>leaves/ | Length of<br>leaves (cm) | Plant<br>canopy | py                | Y       |
|-------------------------------|-------------------|------------------------------------------------|-----------|----------|----------|----------------------|--------------------------|-----------------|-------------------|---------|
| NoPo                          | 14.15g            | 20.5d                                          | 30.05f    | 40.09cd  | 39.87ef  | 14,33cde             | 28.68g                   | 20              |                   |         |
| NoP1                          | 13.71g            | 22.47cd                                        | 29.66f    | 39.65cd  | 39.96ef  | 16.67a-d             | 29 74g                   | 48              | 4g 67.64gh        |         |
| NoP <sub>2</sub>              | 15.27fg           | 23.02bcd                                       | 32.34ef   | 42.52abc | 43.40def | 14,00de              | 33.8                     | 86def           | 6def 69.96fg      | f       |
| NoP <sub>3</sub>              | 13.62g            | 22.06cd                                        | 31.71ef   | 38.25d   | 39.37f   | 12.00e               | 28.                      | 28.61g          | 61g 61.66i        |         |
| N <sub>I</sub> Po             | 17.12de           | 24.45abc                                       | 36,57bcd  | 41.48bcd | 41,49def | 17.00abc             | 35                       | 35.53c-f        | .53c-f 77.52cde   |         |
| N <sub>i</sub> P <sub>i</sub> | 17.55cde          | 25.53ab                                        | 37.67a-d  | 41.02bcd | 41.50def | 14.00de              | 1.2                      | 34,55def        | 34,55def 75,47def |         |
| $N_1P_2$                      | 18.99bcd          | 26.52a                                         | 34.59de   | 41.90a-d | 42.30def | 17.00abc             | -                        | 33.20f          | 33.20f 71.64efg   | 20f     |
| $N_1P_3$                      | 19.52b            | 26.86a                                         | 34.74cde  | 40 45cd  | 41.67def | 16.00a-d             | _                        | 33.70ef         | 33.70ef 72.20efg  | .70ef   |
| $N_2P_0$                      | 17.03ef           | 24.55abc                                       | 39.31ab   | 43,80abc | 45.70bcd | 16.33a-d             | -                        | 35.04c-f        | 35.04c-f 80,80cd  |         |
| N <sub>2</sub> P <sub>1</sub> | 19.09bc           | 26.69a                                         | 38.31abc  | 41.66bcd | 43.46def | 18.00a               | -                        | 36.34cde        | 36.34cde 81.09cd  | 5.34cde |
| $N_2P_2$                      | 18.17ь-е          | 26.48a                                         | 34.62de   | 41.68bcd | 44.57cde | 17.00abc             | -                        | 36.70cd         | 36.70cd 81.96bc   | 5.70cd  |
| N <sub>2</sub> P <sub>3</sub> | 19.92b            | 26.79a                                         | 38.73ab   | 43.31abc | 46.07bcd | 17.00abc             | -                        | 35.29c-f        | 35.29c-f 79.47cd  |         |
| N <sub>3</sub> P <sub>0</sub> | 17.62cde          | 23.51bc                                        | 37.75a-d  | 43.41abc | 49.80ab  | 17.00abc             |                          | 37.48bc         | 37.48bc 83.62bc   |         |
| N <sub>3</sub> P <sub>1</sub> | 14.50g            | 22.42cd                                        | 38.76ab   | 44.67ab  | 51.62a   | 17.67ab              |                          | 35,81c-f        | 35.81c-f 78.83cd  |         |
| $N_3P_2$                      | 16.41ef           | 24.59abc                                       | 40.89a    | 42.37a-d | 48.71abc | 15.00bcd             | _                        | 39.396          | 39.39b 87.62b     | .39b    |
| $N_3P_3$                      | 21.66a            | 26.99a                                         | 37.59a-d  | 45.99a   | 51.87a   | 15.67a-d             | -                        | 42 14a          | 42 14a 102.4a     | 14a     |
| Level of significance         | *                 | *                                              | **        | *        | **       | *<br>*               |                          | **              | **                |         |
| CV%                           | 5.96              | 6.07                                           | 5,39      | 5.08     | 5.90     | 9.32                 | -                        | 437             |                   | 37      |

Table 2: Combined effect of nitrogen and phosphorus on the growth and yield of broccoli

Table 2 (Contd.): Combined effect of nitrogen and phosphorus on the growth and yield of broccoli

| Treatment<br>combination      | Diameter of<br>curd (cm) | No. of<br>secondary<br>curds | Weight of<br>curd (g) | Weight of<br>secondary<br>curd (g) | Yield /plant<br>(g) | Yield /unit<br>plot (kg) | Yield /(t/ha) |
|-------------------------------|--------------------------|------------------------------|-----------------------|------------------------------------|---------------------|--------------------------|---------------|
| NoPo                          | 6.55fg                   | 4.85f                        | 134.9f                | 65.34g                             | 198.7h              | 2.36h                    | 7.86c         |
| NoP                           | 7.22efg                  | 5.18ef                       | 135.2f                | 67.93g                             | 198.8h              | 2.37h                    | 7.90c         |
| NoP <sub>2</sub>              | 8.17def                  | 5.76def                      | 137.0f                | 89.32f                             | 203.9gh             | 2.44gh                   | 8.13c         |
| NoP <sub>3</sub>              | 6.19g                    | 5.91c-f                      | 138.6f                | 78.48fg                            | 206.6gh             | 2.47gh                   | 8.23c         |
| N <sub>1</sub> Po             | 8.97cde                  | 5.20ef                       | 137.2f                | 67.14g                             | 203.2gh             | 2.43gh                   | 8.10c         |
| N <sub>1</sub> P <sub>1</sub> | 9.01cde                  | 5.96c-f                      | 139.0f                | 66.86g                             | 207.9gh             | 2.49gh                   | 8.30c         |
| N <sub>1</sub> P <sub>2</sub> | 7.96d-g                  | 6.23b-f                      | 141.7ef               | 89.73f                             | 214.1gh             | 2.56gh                   | 8.53c         |
| N <sub>1</sub> P <sub>3</sub> | 8.98cde                  | 6.54b-e                      | 143.3ef               | 113.0de                            | 224.6fg             | 2.69fg                   | 8.96c         |
| N <sub>2</sub> P <sub>0</sub> | 9.35cd                   | 5.71def                      | 144.2ef               | 113.1e                             | 240.1f              | 2.87f                    | 9.56b         |
| N <sub>2</sub> P <sub>1</sub> | 9.50bcd                  | 5.81def                      | 145.2ef               | 109.6e                             | 260.9e              | 3.12e                    | 10.40b        |
| N <sub>2</sub> P <sub>2</sub> | 10.54abc                 | 6.25b-f                      | 151.2de               | 126.1cd                            | 288.5d              | 3.45d                    | 11.50b        |
| N <sub>2</sub> P <sub>3</sub> | 9.71bcd                  | 5.23def                      | 160.9d                | 111.6e                             | 321.9c              | 3.85c                    | 12.83b        |
| N <sub>3</sub> P <sub>0</sub> | 10.55abc                 | 6.63bcd                      | 177.7c                | 138.9c                             | 417.3b              | 4.99b                    | 15.63a        |
| N <sub>3</sub> P <sub>1</sub> | 11.55a                   | 7.28abc                      | 198.2b                | 168.9b                             | 436.0b              | 5.22b                    | 17.40a        |
| N <sub>3</sub> P <sub>2</sub> | 11.26ab                  | 7.41ab                       | 199.7b                | 196.2a                             | 433.8b              | 5.16b                    | 17.20a        |
| N <sub>3</sub> P <sub>3</sub> | 11.67a                   | 8.21a                        | 225.3a                | 204.9a                             | 464.1a              | 5.56a                    | 18.53a        |
| Level of<br>significance      | * *                      | *                            | *                     | **                                 | * .                 | *                        | *             |
| CV%                           | 10.68                    | 11.85                        | 4.06                  | 6.86                               | 4.25                | 4.10                     | 4.28          |

29

#### Number of leaves per plant

Application of nitrogen showed a significant influence of the number of leaves per plant (Table 1). It was notable that application of nitrogen increased the number of leaves per plant over control but all the level of nitrogen application showed statistically identical results. However, the highest the number of leaves per plant (17.08) was observation in N<sub>3</sub> treatment. At harvest the number of leaves per plant with control treatment was the lowest (14.25). The increase in leaf number per plant was mainly due to the increased vegetative growth of the plants.

The effect of phosphorus on the number of leaves per plant was not significant. Because the highest number of leaves was recorded in P1 treatment (15.16) and the lowest number of leaves was recorded in P3 treatment (15.16). The interaction effect of nitrogen and phosphorus was not significant in this respect. The number of leaves per plant was 12.00 in NoP3 and that in N3P3treatment was 17.67 (Table 2)

## Length of leaf

The application of different levels of nitrogen caused significant effects on leaf size, but that due to application of phosphorus was not significant. Data in Table 1 shows that the land of leaf increases in rate of nitrogen fertilizer. The maximum leaf length 38.70 cm was attained with the application 180 kg N/ha whiles the minimum leaf length 30.22 cm in control treatment. The increase in leaf length caused by the application of nitrogen was probably due to increased mitotic activity of cells. Among the treatment combination, N<sub>3</sub>P<sub>3</sub> produced in maximum size of leaves (42.14). There was little significant effect in length of leaf with application of P up to 100 kg/ha. The highest length of leaf was found in P<sub>2</sub> treatment (35.78 cm) and the lowest length of leaf was found in P<sub>1</sub> treatment (34.01 cm). The present result is in agreement with that of Tremblay (1989) who reported greater vegetative growth higher leaf size with higher rates of nitrogen.

## Diameter of curd

The effect of nitrogen application was significant for curd diameter in broccoli (Table1). The curd diameter was the highest (11.26 cm) at N<sub>3</sub> treatment followed by N<sub>2</sub> treatment producing curds of 9.78 cm in diameter. It was also observed that N<sub>1</sub> and N<sub>2</sub> treatments produced statistically identical curd diameter. The lowest curd diameter (7.03cm) was noticed in control treatment. The result of the present study agreement with that of Mitra et al. (1990). Similar result was also reported by Santamaria et al. (1994).

There was a little increase in curd diameter with application of phosphorus up to 100 kg /ha, but the increase was not statistically significant (Table 1). The maximum diameter (9.48 cm) was obtained in P<sub>2</sub> treatment while the minimum (8.86 cm) was observed from control treatment. It was also observed that the application of 130 kg P/ha significantly reduced the curd diameter (9.14 cm) (Table 1.)

There was significant interaction between nitrogen and phosphorus in respect of curd diameter (Appendix1). The maximum curd diameter (11.67) was obtained from N3P3 treatment, the lowest curd diameter was obtained from NoP3 (6.19 cm)(Table 2)

#### **Diameter of stem**

Analysis of variance revealed that the stem of broccoli was significantly influenced by the application of nitrogen (Table 1). The stem diameter increased significantly with increased rate of nitrogen. The stem diameter was the highest (3.24 cm) in N<sub>3</sub> treatment while the lowest (1.83 cm) was found from control treatment. Tremblay (1989) reported that stem diameter increased with higher levels of nitrogen application, which supports the present result.

Phosphorus application increased stem diameter up to P<sub>2</sub> and then declined (Table 1). The maximum stem diameter (2.64 cm) was observed in P<sub>2</sub> and the minimum (2.46 cm) was found from P<sub>3</sub> treatment. The result indicated that stem diameter was affected adversely at highest dose of P.

The interaction effect of nitrogen and phosphorus on stem diameter was significant at 1% level of significance (Appendix 1).Among the treatment combinationsN<sub>3</sub>P<sub>3</sub> produced the highest diameter (3.41 cm). The lowest value was obtained from NoP<sub>0</sub> treatment (1.70 cm) which was statistically similar with NoP<sub>1</sub> treatment combinations (Table 2).

#### **Plant canopy**

Statistically significant difference was observed in spread of plant canopy as affected of different levels of nitrogen (Table 1). The spread of plant canopy increased with increasing rate of nitrogen application, and the widest spread (88.11 cm) was observed in N<sub>3</sub> treatment and the lowest spread (65.62 cm) was observed in control. The effect of phosphorus application on the spread of plant canopy was not significant. The treatment combination produced significant effect on the spread of plant canopy. The results in Table 2 reveal that the widest spread (102.4 cm) was produced by  $N_3P_3$ treatment. The lowest canopy spread (63.23 cm) was noticed in control (NoPo) treatment.

#### Weight of curd

Different levels of nitrogen showed a significant effect on the weight of central curd of broccoli. The maximum central curd weight (200.2 g) was recorded with 180 kg N/ha. The second highest central curd weight (150.4 g) was obtained with 130 kg N, and the lowest central curd weight (136.4 g)was recorded in control plots (No). Mitra et al. (1990) reported similar results, where application of 112 kg N/ha gave higher curd weight.

There was significant influence of phosphorus on the curd weight. The central curd attained maximum weight (167.0 g) when 130 kg P/ha was applied, and it was statistically at per with that obtained from 70 kg P/ha. The lowest of central curd (148.5 g) was noted in control treatment (Table 1).

The interaction effect of nitrogen and phosphorus on central curd of broccoli was significant. However, there was a significant variation among the treatment combinations in curd weight. The highest central curd weight (225.3 g) was obtained from the treatment combination of N<sub>3</sub>P<sub>3</sub>, and the lowest was obtained from the NoP<sub>3</sub> treatment (134.9 g) (Table 2). The result indicated that higher phosphorus application without nitrogen application adversely affected the central curd weight.

#### Weight of secondary curd

The effect of nitrogen on secondary curd weight was statistically significant. As in central curd weight, secondary curd weight increased with increase in the dose of N.

The maximum weight of secondary curd (177.2 g) was obtained with the application of 180 kg N/ha, and the minimum weight (75.27 g) was recorded in control treatment (Table 1)

Application of P had significantly on secondary curd weight of broccoli. The lowest secondary curd weight (96.11 g) was obtained from control. The maximum secondary curd weight (96.11 g) was obtained from control (Po) and the minimum (103.3g) was found from P1 treatment (Table 1).

The interaction effect of nitrogen and phosphorus showed highly significant on secondary curd weight (Appendix 1). The highest secondary curd weight (204.9 g) was recorded from the combination of 180 kg N and 130 kg P/ha (N<sub>3</sub>P<sub>3</sub>). The lowest secondary curd weight (65.35 g) was obtained from control treatment (Table 2).

#### Number of secondary curd

Nitrogen had a highly significant effect on the number of secondary curd. The number of secondary curd increased significantly with increase of nitrogen rate. The highest number of secondary curd (7.39) was obtained when the plants were supplied with 180 kg N/ha. The second highest number of secondary curd (5.98) was obtained with 130 kg N/ha, while the lowest number of secondary curds (5.43) was obtained when no nitrogen was applied (Table 1).

The numbers of secondary curds were found to vary with the application of phosphorus. Likewise nitrogen, the number of secondary curd increased with increase in the level of phosphorus application. The highest of secondary curd (6.48) was obtained with the application of 130 kg P/ha, while the lowest secondary curd (5.6) was recorded from control treatment.

The number of secondary curd did not differ significantly among the treatment combinations. The highest number of secondary curd (8.21) was obtained with application of 180 kg N and 130 kg P/ha (N<sub>3</sub>P<sub>3</sub>) the lowest number of secondary curd (4.85) was observed in the combination N1P1 (80 kg N x 70 kg P/ha)

#### Days required for curd initiation

The number of days required for curd initiation was not significantly influenced by nitrogen application. The control treatment where no nitrogen was applied produced curd within 59.99 days after transplanting of seedlings; but in treatment where nitrogen was applied at different doses produced curd within 59.61 to 61.08 days after transplanting (Table 1).

The application of phosphorus significantly influenced the number of days required for curd initiation (Table 1). The number of days to curd initiation from transplanting was significantly reduced with increased rate of phosphorus application. The treatment receiving 70 and 100 kg phosphorus per hectare took identical number of days for initiation of curds, the figures being 59.36 and 59.67 days respectively. The least time (60 days) was required for curd initiation where 130 kg P was applied. The result indicated that P might have related vegetative growth and forced the plants to reach reproductive stages the earlier. Mitra et al. (1990) reported that application of phosphorus hastened the crop to reach reproductive stage, which is an agreement with findings of the present work.

The application of nitrogen and phosphorus was not significant interaction effect on the number of days for curd initiation (Appendix 1). There was not significant variation among the treatment combinations in days to curd initiation (Table 2). The minimum days (57.60 days) was required curd initiation in the N<sub>2</sub>P<sub>1</sub> treatment followed by N<sub>3</sub>P<sub>3</sub> treatment (58.33 days). The maximum days (62.03 days) was required in control treatment (NoPo)

#### Yield per plant

The application of nitrogen exhibited significant influence on the yield of curds per plant. The highest yield per plant (437.8 g) was obtained from the highest dose of N (180 kg N/ha). The next highest yield per plant (277.8 g) was reduced from 130 kg N/ha. The lowest yield per plant (202.0 g) was recorded in control treatment (Table 1). The result of the present experiment is in agreement with other reports (BARI, 1981; Sarma and Arora, 1984).

The yield per plant was significantly influenced by the application of phosphorus (Table 1). The maximum yield per plant was (304.0 g) obtained from the plants supplied with 130 kg P/ha. The lowest yield per plant (264.8 g) was noted in control. Similar result was also reported by Brown et al. (1994).

The interaction effect of nitrogen and phosphorus on yield per plant was significant. The highest yield per plant (464.1 g) was obtained from N<sub>3</sub>P<sub>3</sub>, which was statistically identical with the use of N<sub>3</sub>P<sub>2</sub> and N<sub>3</sub>P<sub>1</sub>. The lowest yield per plant (198.7 g) was observed in control plots which were statistically identical with that of NoP1 and NoP3. it was evident from the result that, when no nitrogen was applied the application of phosphorus failed to increase a higher extent. The result is consistent with the of Mitra et al. (1990). They reported that the cauliflower did not respond to phosphorus in absence of nitrogen.

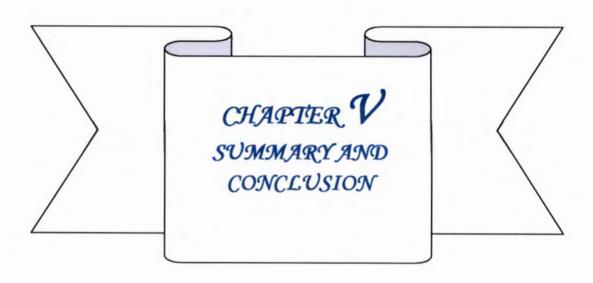
## Yield per plot and per hectare

The yield per plot as well as per hectare was found to be significantly influenced due to the application of nitrogen (Table 1). The interaction effect was also significant (Appendix 1). The maximum curd yield per plot (5.23 kg) and per hectare (17.43 t) were reduced by the application of 180 kg N /ha, which was significantly higher than 100 kg N /ha. The lowest curd yield (2.41 kg / plot and 8.03 t/ha) was obtained in the plots where no nitrogen was applied. Kowalenko (1983) reported that head yield increased linearly up to the application of 250 kg N/ha.

Application of phosphorus had a significant influence on yield per plot and per hectare. Application of 130 kg P per hectare produced the highest (3.64 kg per plot 12.13 t/ha) which were statistically similar with those obtained with 70 kg P/ha. The lowest yield (3.17 kg /plot and 10.56 t/ha) was obtained from control (Table 1), which was similar with that obtained from 100 kg P/ha. The results suggest that application of P beyond 100 kg/ha were not helpful, rather had deleterious effect on the yield of broccoli.

The yield per plot and per hectare was influenced significantly with the combined application of nitrogen and phosphorus. The highest yield per plot (5.56 kg) and per hectare (18.53 t) was achieved in N<sub>3</sub>P<sub>3</sub> treatment which was statistically identical with N3P1 and N<sub>3</sub>P<sub>2</sub>. The lowest yield (2.37 kg/plot and 7.86 t/ha) was obtained from control (NoPo), which was statistically as per with NoP1.

#### Cost and return analysis


Total costs and returns for each treatment was calculated based on the prevailing market price during the study period. The details of cost analysis have been shown in Appendix 2. The benefit cost ratio was computed by dividing the total return with the total cost of production. The table 3 shows that the lowest costs for production (51955Tk/ha) was in NoPo where no nitrogen and no phosphorus were applied and the highest costs were in treatments N<sub>3</sub>P<sub>3</sub>. The gross return was obtained highest (277950 Tk /ha) with N<sub>3</sub>P<sub>3</sub> treatment. The lowest gross return (117900 Tk /ha) was obtained in NoPo treatment. The maximum net return (213592 Tk/ha) was obtained from N<sub>3</sub>P<sub>3</sub> treatment. The lowest net return from NoPo was 60609 Tk/ha.

The benefit cost ratio (BCR) was the highest (4.36) for  $N_3P_1$  treatment which was followed by  $N_3P_2$  (4.31). The lowest BCR was shown by  $NoP_2$  treatment (2.06). The result indicated that application of phosphorus without nitrogen could increase yield, but cause economic loss. The present experiment revealed that the application of 180 kg N/ha along with 130 kg P/ha was found to be conducive to higher yield as well as higher economic return from broccoli under the Modhupur Tract Agro ecological Region of Bangladesh.

| 2                                     |   |
|---------------------------------------|---|
| 2                                     |   |
| 5                                     |   |
| Ĕ                                     |   |
| 1                                     |   |
| 10                                    |   |
| S                                     |   |
| $\underline{\circ}$                   |   |
| -                                     |   |
| source public                         |   |
|                                       |   |
| ž                                     |   |
| 1                                     |   |
| aı                                    |   |
|                                       |   |
| Ð                                     |   |
| 5                                     | D |
| rogei                                 | - |
| ž                                     |   |
|                                       |   |
| 2                                     |   |
|                                       |   |
| f                                     |   |
| 0                                     |   |
| S                                     |   |
| -                                     |   |
| e                                     |   |
| >                                     |   |
| e                                     |   |
| -                                     |   |
| 1                                     |   |
|                                       |   |
| e.                                    |   |
| 5                                     |   |
| f                                     |   |
| 4                                     |   |
|                                       |   |
| 0                                     |   |
| >                                     |   |
| 0                                     | ľ |
| _                                     |   |
| P                                     |   |
| e                                     |   |
| 5                                     |   |
| -                                     |   |
| n )                                   |   |
| fe                                    |   |
| ffe                                   |   |
| affe                                  |   |
| s affe                                |   |
| as affe                               |   |
| i as affe                             |   |
| li as affe                            |   |
| oli as affe                           |   |
| coli as affe                          |   |
| ccoli as affe                         |   |
| occoli as affe                        |   |
| proccoli as affe                      |   |
| broccoli as affe                      |   |
| n broccoli as affe                    |   |
| m broccoli as affe                    |   |
| n broccoli as                         |   |
| n broccoli as                         |   |
| n broccoli as                         |   |
| n from broccoli as                    |   |
| n from broccoli as                    |   |
| n broccoli as                         |   |
| turn from broccoli as                 |   |
| turn from broccoli as                 |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| turn from broccoli as                 |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| return from broccoli as               |   |
| e 3. Cost and return from broccoli as |   |
| return from broccoli as               |   |
| e 3. Cost and return from broccoli as |   |
| e 3. Cost and return from broccoli as |   |
| e 3. Cost and return from broccoli as |   |
| e 3. Cost and return from broccoli as |   |

| NoP<br>NoP<br>NoP7.86<br>NoP117900<br>7.9051956<br>6654460609<br>655442.26<br>2.28NoP<br>NoP<br>NoP8.131228505975665442.28NoP<br>NoP8.131228505975653742.06NoP<br>NoP8.1312285059575653742.06NoP<br>NoP8.101215005967615902.38NiP<br>NiP8.1012150053067684332.26NiP<br>NiP8.3012150053103663972.14NiP<br>NiP8.531279506678672722.10NiP<br>NiP8.5312795062972714282.13NiP<br>NiP9.561440053764896362.60NiP<br>NiP9.5614340053764896362.60NiP<br>NiP10.4017200613841111162.81NiP<br>NiP11563172500613841111162.81NiP<br>NiP115632445063681237823.02NiP<br>NiP1720238000630582.0509960002.43NiP<br>NiP172023800063058133764895364.30NiP<br>NiP17202495063681237223.02NiP17202495063681237223.02NiP172025800630741949664.30NiP172025800630741949664.30NiP </th <th>NoPo<br/>NoP<sub>1</sub><br/>NoP<sub>2</sub><br/>NoP<sub>3</sub><br/>NiPo<br/>NiPi<br/>NiP</th> <th></th> <th>(Tk/ha)</th> <th>Total costs of production (Tk/ha)</th> <th>(Tk/ha)</th> <th>Benetit - cost<br/>Ratio</th>        | NoPo<br>NoP <sub>1</sub><br>NoP <sub>2</sub><br>NoP <sub>3</sub><br>NiPo<br>NiPi<br>NiP                       |              | (Tk/ha) | Total costs of production (Tk/ha) | (Tk/ha) | Benetit - cost<br>Ratio |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------|---------|-----------------------------------|---------|-------------------------|
| 7.9011850057291 $66544$ $8.13$ $123850$ $59575$ $63374$ $8.13$ $123450$ $61860$ $61590$ $8.10$ $121500$ $53067$ $64333$ $8.23$ $121500$ $53067$ $64333$ $8.30$ $121500$ $53067$ $64333$ $8.30$ $124500$ $53103$ $66397$ $8.33$ $127950$ $60678$ $61397$ $8.53$ $127950$ $60678$ $67272$ $8.96$ $134400$ $62972$ $71428$ $9.56$ $143400$ $53764$ $89636$ $10.40$ $15600$ $53099$ $6000$ $11.50$ $172500$ $61384$ $111116$ $11.53$ $192450$ $63668$ $128782$ $17.40$ $261000$ $59790$ $201210$ $17.20$ $258000$ $62074$ $194966$ $17.20$ $258000$ $62074$ $195926$ $18.53$ $277950$ $64358$ $213592$                                                                                                                                                                                                                                                                                                                                                                                             | NoP <sub>1</sub><br>NoP <sub>2</sub><br>NoP <sub>3</sub><br>N <sub>1</sub> P <sub>1</sub><br>N,P <sub>2</sub> | 7.86         | 117900  | 51956                             | 60909   | 2.26                    |
| 8.13       122850       59575       63274         8.23       123450       61860       61590         8.10       121500       53067       6433         8.10       121500       53067       6433         8.10       121500       53103       66397         8.10       124500       58103       66397         8.53       127950       60678       67272         8.56       134400       53764       89636         9.56       143400       53764       89636         10.40       156000       53764       89636         11.50       172500       61384       111116         11.50       172500       61384       111116         12.83       192450       53668       128782         15.63       249450       54454       194966         17.40       261000       59790       201210         17.20       258000       62074       195926         18.53       277950       64358       201210         17.20       258000       62074       195926         18.53       277950       64358       201210 | NoP2<br>NoP3<br>N1P0<br>N1P1<br>N.P2                                                                          | 7.90         | 118500  | 57291                             | 66544   | 2.28                    |
| 8.23       123450       61860       61590         8.10       121500       53067       68433         8.30       124500       53103       68433         8.30       124500       53103       66397         8.53       127950       60678       67272         8.53       127950       60678       67272         8.54       134400       62972       71428         9.56       143400       53764       89636         10.40       156000       59099       96000         11.50       172500       61384       111116         11.50       172500       61384       111116         11.50       172500       61384       111116         15.63       249450       54454       19496         17.40       261000       59790       201210         17.20       258000       62074       194966         17.20       258000       64358       213592         18.53       277950       64358       213592                                                                                                      | NoP <sub>3</sub><br>N <sub>1</sub> P <sub>1</sub><br>N,P,                                                     | 8.13         | 122850  | 59575                             | 63274   | 2.06                    |
| 8.10       121500       53067       68433         8.30       124500       58103       68433         8.53       127950       60678       65397         8.53       127950       60678       67272         8.53       127950       60678       67272         8.54       134400       62972       71428         9.56       143400       53999       67272         10.40       156000       53999       96000         11.50       17500       61384       111116         12.83       192450       61384       111116         12.83       192450       63668       128782         15.63       249450       54454       194996         17.40       258000       59790       201210         17.20       258000       62074       195926         18.53       277950       64358       213592                                                                                                                                                                                                            | N <sub>1</sub> Po<br>N <sub>1</sub> P <sub>1</sub><br>N,P,                                                    | 8.23         | 123450  | 61860                             | 61590   | 2.38                    |
| 8.30       124500       58103       66397         8.53       127950       60678       67272         8.54       134400       62972       67272         8.96       134400       62972       71428         9.56       143400       53764       89636         10.40       156000       59099       96000         11.50       172500       61384       111116         12.83       192450       63668       128782         15.63       249450       54454       194996         17.40       261000       59790       201210         17.20       258000       62074       195926         18.53       277950       64358       213592                                                                                                                                                                                                                                                                                                                                                                   | N <sub>1</sub> P <sub>1</sub><br>N,P,                                                                         | 8.10         | 121500  | 53067                             | 68433   | 2.28                    |
| 8.53       127950       60678       67272         8.96       134400       62972       71428         9.56       134400       53764       89636         9.56       143400       53764       89636         10.40       15600       53099       96000         11.50       172500       61384       111116         11.53       192450       63668       128782         12.83       192450       63668       128782         15.63       249450       54454       194996         17.40       261000       59790       201210         17.20       258000       63058       213592         18.53       277950       64358       213592                                                                                                                                                                                                                                                                                                                                                                  | N.P.                                                                                                          | 8.30         | 124500  | 58103                             | 66397   | 2.14                    |
| 8.96       134400       62972       71428         9.56       143400       53764       89636         9.56       143400       53764       89636         10.40       156000       59099       96000         11.50       172500       61384       111116         11.53       192450       63668       128782         15.63       249450       54454       194996         17.40       261000       59790       201210         17.40       258000       63068       128782         17.40       251000       54454       194996         17.40       258000       63074       195926         18.53       277950       64358       201210                                                                                                                                                                                                                                                                                                                                                               | 7 -1                                                                                                          | 8.53         | 127950  | 60678                             | 67272   | 2.10                    |
| 9.56     143400     53764     89636       10.40     156000     59099     96000       11.50     172500     61384     111116       11.50     17260     63668     128782       15.63     192450     63668     128782       15.63     249450     54454     194996       17.40     261000     59790     201210       17.20     258000     62074     195926       18.53     277950     64358     213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N <sub>1</sub> P <sub>3</sub>                                                                                 | 8.96         | 134400  | 62972                             | 71428   | 2.13                    |
| 10.40         156000         59099         96000           11.50         172500         61384         111116           12.83         192450         63668         128782           15.63         249450         54454         194996           17.40         261000         59790         201210           17.20         258000         62074         195926           18.53         277950         64358         213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N_2P_0$                                                                                                      | 9.56         | 143400  | 53764                             | 89636   | 2.66                    |
| 11.50     172500     61384     111116       12.83     192450     63668     128782       15.63     249450     54454     194996       17.40     261000     59790     201210       17.20     258000     62074     195926       18.53     277950     64358     213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N <sub>2</sub> P <sub>1</sub>                                                                                 | 10.40        | 156000  | 59099                             | 00096   | 2.60                    |
| 12.83     192450     63668     128782       15.63     249450     54454     194996       17.40     261000     59790     201210       17.20     258000     62074     195926       18.53     277950     64358     213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_2P_2$                                                                                                      | 11.50        | 172500  | 61384                             | 111116  | 2.81                    |
| 15.63     249450     54454     194996       17.40     261000     59790     201210       17.20     258000     62074     195926       18.53     277950     64358     213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N <sub>2</sub> P <sub>3</sub>                                                                                 | 12.83        | 192450  | 63668                             | 128782  | 3.02                    |
| 17.40         261000         59790         201210           17.20         258000         62074         195926           18.53         277950         64358         213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_3P_0$                                                                                                      | 15.63        | 249450  | 54454                             | 194996  | 4.30                    |
| 17.20         258000         62074         195926           18.53         277950         64358         213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>3</sub> P <sub>1</sub>                                                                                 | 17.40        | 261000  | 59790                             | 201210  | 4.36                    |
| 18.53         277950         64358         213592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N <sub>3</sub> P <sub>2</sub>                                                                                 | 17.20        | 258000  | 62074                             | 195926  | 4.15                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N <sub>3</sub> P <sub>3</sub>                                                                                 | 18.53        | 277950  | 64358                             | 213592  | 4.31                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                               | = 70  kg/ha  |         |                                   |         |                         |
| p1 =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= 130 \text{ N/ha} \text{ p}_2$                                                                              | = 100  kg/ha |         |                                   |         |                         |

39



# **CHAPTER V**

# SUMMARY AND CONCLUSION

#### SUMMARY :

An experiment was conducted to find out the effect of nitrogen and phosphorus on the growth and yield of broccoli at the Horticulture Farm of Sher-e Bangla Agriculture University, Dhaka during the period from November 2005 to February 2006. The experiment comprised four levels of nitrogen viz., 0, 80, 130, and 180 kg N/ha and four levels of phosphorus viz., 0, 70, 100 and 130 kg P/ha. The experiment was laid out in the Randomized Complete Block Design with three replications. The unit plot size was 1m x 3 m. both the distance between the plots and blocks were 0.5m. The land was supplied with 20 tons of well decomposed cowdung per hectare at the beginning of the ploughing operation. Muriate of potash was applied at the rate of 200 kg /ha to supply as K to the soil. Total amount of P were applied through triple superphosphate (TSP) during the final land preparation as per experimental treatment. The urea and MP were applied in two equal splits one at 15 Days after transplanting (DAT) and rest at 40 DAT. Irrigation and other intercultural operations were done as and when needed.

The height of the plants was taken after 10, 20, 30, 40 DAT and at harvest from randomly selected ten plants. The size of leaves, diameter of curd, diameter of stem, weight of central curd, weight of secondary curd, plant canopy, number of secondary curds, days required to curd initiation were recorded at harvest. The yield per plant, yield per plot were also recorded. All the collected data were analyzed statistically and the means were adjudged by DMRT.

The effects of nitrogen on plant height, leaf size, plant canopy spread, number of leaves per plant, stem diameter, curd diameter, number of secondary curd, central curd weight, secondary curd weight, yield per plant, yield per plot and yield per hectare were significant, but was not significant for the number of days to curd initiation. More or less all the characters mentioned above attained highest values when a dose of 180 kg N /ha was applied. The plant height with 180 kg N/ha were 17.55, 24.38, 38.74 and 44.11 cm at 10, 20, 30 and 40 DAT, respectively, which were as per with those with 130 kg N/ ha. At harvest, highest plant height (50.49 cm) was observed with 180 kg N /ha. The maximum leaf length (38.70 cm) was with 180 kg N /ha, while that was only 30.22 cm in control. The numbers of leaves per plant with 130 kg N was 17.08 which was similar with those of the plants receiving 80 and 180 kg N /ha and the lowest in the control. The highest values for stem diameter, curd diameter, number of secondary curd, secondary curd weight, yield per plant, yield per plot and yield per hectare were 3.23 cm, 11.26 cm, 7.38, 177.2 g, 437.8 g, 5.23 kg and 17.43 t respectively while those with control were 1.83 cm, 7.03 cm, 5.42 cm, 75.27 g, 202.0 g, 2.41 kg and 8.03 t respectively.

The effect of phosphorus on plant height, spread of plant number of leaves per plant, diameter of stem, days to curd initiation and diameter of curd were not significant. But all other characters were found significant. It appeared that the number of days to curd initiation decreased with application of phosphorus. The maximum stem diameter (2.64 cm), curd diameter (9.48 cm), central curd weight (167 g), secondary curd weight (125.3 g), yield per plant (304.3 g), yield per plot (3.64 kg) and yield /ha (12.13 t) were obtained when 130 kg P/ha was applied and the corresponding values were 2.57 cm, 8.85 cm, 148.5 g, 96.11 g, 264.8 g, 3.17 kg and 10.56 t respectively with control.

The interaction effect of nitrogen and phosphorus was significant for all the parameters under study except for plant height at 20 DAT, 40 DAT, at harvest, days to curd initiation, diameter of curd and number of secondary curd. The highest plant height at 10 and 20 DAT were 21.66 and 26.99 cm with N3P3 (180 kg N x 130 kg P/ha) but at 30 DAT the plant height showed maximum value of 40.89 cm with N3P2 (180 kg N x 100 kg P /ha) treatment. It was noted that at all the dates of observation the lowest plant height was recorded in control plots. The maximum spreading of plant (102.4 cm) was found with N3P3 treatment and the lowest (61.66 cm) in NoP3. The maximum duration to curd initiation (62.03 days) required with NoP0 treatment combinations. The least time (57.60 days) was required to initiate curd for N2P1 treatment. The stem diameter and number of secondary curd were the highest with N3P3 treatment (3.41 cm and 8.21 respectively) which were statistically similar with values obtained for N3P1 and N3P2. The curd diameter was the maximum with N3P3 treatment (11.67 cm) that was statistically as per with N3P1 and N3P2 treatments.

The maximum curd yield per plant (464.1 g) was obtained with N<sub>3</sub>P<sub>3</sub> treatment which was also statistically identical with N<sub>3</sub>P<sub>2</sub> and N<sub>3</sub>P<sub>1</sub> treatments. The lowest yield per plant (198.7 g) was recorded under control. The highest curd yield (5.56 kg /plot and 18.53 t/ha) were recorded with N<sub>3</sub>P<sub>3</sub> treatment and were similar with that obtained for N<sub>3</sub>P<sub>2</sub> and N<sub>3</sub>P<sub>1</sub> treatments. The plots under control treatment gave the lowest yield (2.36 kg/plot and 7.86 t/ha). The benefit cost ratio (BCR) was the highest (4.36) for N<sub>3</sub>P<sub>1</sub> treatment which was followed by N3P2 (4.31). The lowest BCR was shown by NoP<sub>2</sub> treatment (2.06).

# **CONCLUSION:**

The present experiment revealed that the application of 180 kg N/ha along with 130 kg P/ha was found to be conducive to higher yield as well as higher economic return from broccoli.

# REFERENCES

- Alam, M. S., M. T. Iqubal, M. S. Amin and M. A. Gaffer. 1989. Krishitattik Fasaler Utpudan 0 Unnayan. T. M. Jubair Bin Iqubal. Ilb. Manik Potal, Meghai, Sirajgonj. Pp. 231-239.
- Anonymous, 1981. Annual Report, Bangladesh Agricultural Research Institute, Joydebpur, Dhaka. P. 29.
- Anonymous, 1981. Annual Report, Bangladesh Agricultural Research Institute, Joydebpur, Dhaka. P. 7.
- Bracy, R. P.; R. i. Parish; P. E. Burgeron, 1995. Sidedress N application methods for broccoli production. Journal of Vegetable crop Production. 1 (1): 63-71.
- Brown, J. E.; J. M. Dangle.; C. H. Gilliam; D. W. Porch; R. L. Shumack, 1994. Comparison of broiler litter and inorganic nitrogen, phosphorus, and potassium for double cropped sweet corn and broccoli. Journal of Plant Nutrition. 17 (5): 859-867.
- Burghardt, H. and K. Ellering . 1986. Tolerance and effect of leaf fertilization treatments on vegetables. Gartebauwissenscharft, 51 (2): 58-62.
- Curtliffe, J. A. 1975. Hollowstem in broccoli. Canada Agriculture, 2(3): 19[cited from Hort. Abst. 46(5): 397(1976)].
- Demchak, K.T.and C.B. Smith. 1990. Yield responses and nutrient uptake of broccoli as affected by lime type and fertilizer. Journal of the American Society for Horticultural Sciences, 115 (5): 737-740.
- El-Beheidi, M.and A.A. El-Mansi. 1975. The effect of nitrogen level and spacing on broccoli yield. Beitrage fur Tropsichan lundwirteschaft and veterinarmedizin. 11(3): 291 -297.
- FAO. 1988.land Resources Appraisal of Bangladesh for Agricultural Development. Report No .2. Agro-ecological Regions of Bangladesh. Food and Agriculture Organization of the United Nationbs, Rome, Italy. Pp. 212-221.
- Gomez, K.A. and A.A.Gomez. 1984. Statistical Procedures for agricultural research second edition. A wiley Inter Science Production, John Whiley & Sons.New York. p. 680.
- Kowalenko, C.G. 1983. Brccoli responds to nitrogen application . Research Review, Research Station – Agassiz-B.C. May – August 8-9. [CAB abst. 1984-1986.].

- Letey, J.; W.M. Jarrell; N. Valoras and R. Beverly . 1983. Fertilizer application and irrigation management of broccli production and fertilizer use efficiency. Agronomy Journal, 75(3) : 502-507.
- Lewandowska, A.M. and H. Skapski. 1977. Effect of variety, spacing and level of nitrogen fertilizations on the quality and broccoli yield. Biulotyn Warzywniczy, 20: 99-118.
- Lincoln, C.P. 1987. Vegetable Characteristics, Production and Marketing. John Wiley and Sons. Inc. New York . P.217.
- Liu, L. and B.J. Shelp. 1993. Broccoli yield and nitrogen composition in response to different management regimes. Communications in Soil Science and Plant Analysis, 24 : 1-2, 61-64.
- Magnifico, V.V. lattanzio, and G. Sarli, 1979. Growth and nutrient removed by broccoli. Journal of the American Society for Horticultural Science, 104 (2): 201-203.
- Magnifico, V.; V. Lattanzio; A. Elia and M.Molfetta. 1989. Growth and nutrient removal by broccoli raub. Advances in Horticultural Science, 3(2): 68-72.
- Magnifico, V.; V.V. Bianco.; V. Marzi; E. Taranteno; P. Montemurro and G. Sarli. 1993. Research on a sequence of four vegetable crops for processing in one year. I Feasibility and yields in a five year period. Annali-della-Facolta-di-Agraria-Universitia –di-Bari. 34 : 125-132.[CAB Abst. 1995].
- Mathur, M.M. and K.S. Vashistha. 1976. Effect of different spacing cum- nitrogen doses on the yield of broccoli. Upyanika, 2:45-47.
- Maynard. A.A. 1994. Sustained vegetable production for three years using composted animal manures. Compost Science and Utilization, 2(1): 88-96.
- Mital,R.K.; T.Singh; M. Bhugat and K.P Maheshwari. 1975. Response of broccoli to nitrogen and row spacing. Indian Journal of Agronomy, 20 (3): 278-279.
- Mitra, S.K.; M.K. Sadhu and T.K Bose. 1990. Nutrition of Vegetable crops. Naya Prokash; Calcutta 700006 ; India. pp. 157-160.
- Nonnecke. I.L. 1989. Vegetable Production . Van Nostrand Reinhold, New York. pp.394-399.
- Pieters, J.H. 1976. Effect of supplementary broccoli for multiple harvesting. Bedrijfsont Wikkeling, 7(2): 111-115.
- Rajput, C.B.S. and K.P. Singh. 1975. Response of Broccoli cultivars to various levels and methods of nitrogen application. Journal of Indian Horticultural Sciences, 3 (1): 23-30.

- Rajput, C.B.S. and Singh, K.P. 1975.Response of cauliflower cultivar snowball 16 of various levels and methods of nitrogen application. Bangladesh Horticulture, 3 : 23-30.
- Rashid, M.M.1993. Sabji Bijnan. Text Book Division, Bangla Academy, Dhaka, Bangladesh. p. 217.
- Santamaria, P.; A.Elia and G. Conversa, 1994. Growth and yield of broccoli (Brassica olerucea L var. Italica) In a vegetable crops sequence. Effects of nitrogen and herbicides. Rivista –di- Agronomia. 28 (2): 135-141.
- Sharma, R.P. and P.N. Arora. 1984. Response of mid season broccoli to rates and time of nitrogen application and plant density. Indian Journal of Agronomy, 29: 468-70.
- Shoemaker, J.S.; J.E. Benjamin and Teskey. 1962. Practical Horticulture. John Wiley & Sons. Inc. New York. p.219.
- Simoes, A.M.; F. Calouro; E. Abrantes; E. Sousa, M.A.C Fragoso and M.L Beusichem. 1993. Influence of container size and substrate mineral composition on transplant growth and yield of broccoli cv. Green Duke. Optimization of plant nutrition. Lisbon.Portugal. pp.87-92.
- Simon, J.1976. The effect of graduated rates of nitrogen and irrigation on the yield of broccoli, Sbornik UVTI. Zahradnietivi,2(5): 37-45.
- Steffen, K.L.; M.S. Dann; K. Fager; S.L Fleischer and J.K. Harper. 1994. Short term and long term impact of an initial large scale SMS soils amendment on vegetable crop productivity and resource use efficiency. Compost Science and Utilization, 2(4): 75-83.
- Sumiati. H. 1988. The effect of cultiar and growing medium on the growth and development of Broccli seedlings in the nursery. Bulletin- Penelitian-Horticulture, 16(4): 14-23.
- Thompson, H.C., W.C. kelly. 1957. Vegetable Crops sMegraw Hill Book Company, Inc. New York. P. 308.
- Tindall, H.D. 1983. Vegetables in the Tropics. Macmillan Education. Ltd. Honndills., Basingstoke, Hampshire. pp. 126-128.
- Tremblay, N. 1989. Effect of nitrogen sources and rates on yield and hollow stem development in broccoli. Canadian Journal of Plant Science, 69 (3) 1049-1053.

APPENDICES

| Source of         | Degree        |         |          | Me            | an squire v | alues    |                     |           |
|-------------------|---------------|---------|----------|---------------|-------------|----------|---------------------|-----------|
| variation<br>(SV) | of<br>freedom |         | Plant he | ight at diffe | rent DAT    |          | Number              | Length of |
| (0.)              | (df)          | 10      | 20       | 30            | 40          | Harvest  | of leaves/<br>plant | leaves    |
| Replication       | 2             | 15.39   | 9.42     | 7.22          | 2.66        | 4.59     | 2.64                | 4.28      |
| Treatment         | 15            | 17.33** | 12.86**  | 35.25**       | 11.49*      | 51.24**  | 8.02**              | 39.18**   |
| Factor A          | 3             | 48.92** | 42.44**  | 144.22**      | 35.79**     | 234.42** | 17.29**             | 150.28**  |
| Factor B          | 3             | 14.71** | 13.52**  | 0.59ns        | 0.45ns      | 1.32ns   | 4.39ns              | 7.36*     |
| AxB               | 9             | 7.68**  | 2.78ns   | 10.49*        | 7.08ns      | 6.82ns   | 6.15*               | 12.76**   |
| Error             | 30            | 1.04    | 2.23     | 3.75          | 4.55        | 6.89     | 2.20                | 2.31      |

# Appendix I. Analysis of variance for plant characters of broccoli

\* Significant at 5% level of probability \*\* Significant at 1% level of probability

ns: Not significant

# Appendix I (Contd.) Analysis of variance for plant characters of broccoli

| Source of         | Degree                |              |                         | Mean so                       | quire value         | es                          |                       |
|-------------------|-----------------------|--------------|-------------------------|-------------------------------|---------------------|-----------------------------|-----------------------|
| variation<br>(SV) | of<br>freedom<br>(df) | Plant canopy | Dia<br>meter of<br>stem | Days to<br>curd<br>initiation | Diameter<br>of curd | No. of<br>secondary<br>curd | Weight of curd<br>(g) |
| Replication       | 2                     | 18.31        | 0.044                   | 5.929                         | 0.23                | 0.12                        | 23.31                 |
| Treatment         | 15                    | 296.26**     | 1.00**                  | 7.93ns                        | 8.50**              |                             | 2362.07**             |
| Factor A          | 3                     | 1100.76**    | 3.95**                  | 6.98ns                        | 37.86**             | 8.94**                      | 10459.35**            |
| Factor B          | 3                     | 24.92ns      | 0.10ns                  | 6.03ns                        | 0.86ns              | 1.93*                       | 720.37**              |
| A x B             | 9                     | 118.54**     | 0.31**                  | 8.88ns                        | 1.26ns              | 0.52ns                      | 210.20**              |
| Error             | 30                    | 11.20        | 0.08                    | 8.30                          | 28.95               | 0.53                        | 40.46                 |

\* Significant at 5% level of probability \*\* Significant at 1% level of probability

ns: Not significant

# Appendix I (Contd.) Analysis of variance for plant characters of broccoli

| Degree of<br>freedom<br>(df) | Wt. of<br>secondary curd<br>(g) | Yield / Plant (g)                                                                                | Yield / Unit<br>plot (kg)                                                                                                                                         | Yield (t / ha)                                                                                                                                                                                                         |
|------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                 |                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                        |
| 2                            | 6.79                            | 133.17                                                                                           | 0.016                                                                                                                                                             | 0.13                                                                                                                                                                                                                   |
| 15                           | 6037.82**                       | 29463.53**                                                                                       | 4.21**                                                                                                                                                            | 1702.72**                                                                                                                                                                                                              |
| 3                            | 25539.14**                      | 142116.38**                                                                                      | 20.31**                                                                                                                                                           | 112.61**                                                                                                                                                                                                               |
| 3                            | 2907.98**                       | 3353.52**                                                                                        | 0.48**                                                                                                                                                            | 2.37**                                                                                                                                                                                                                 |
| 9                            | 580.66**                        | 615.91**                                                                                         | 0.09**                                                                                                                                                            | 0.52**                                                                                                                                                                                                                 |
| 30                           | 59.99                           | 144.16                                                                                           | 0.01                                                                                                                                                              | 0.11                                                                                                                                                                                                                   |
|                              | 15<br>3<br>3<br>9               | 15       6037.82**         3       25539.14**         3       2907.98**         9       580.66** | 2       6037.82**       29463.53**         3       25539.14**       142116.38**         3       2907.98**       3353.52**         9       580.66**       615.91** | 2       6037.82**       29463.53**       4.21**         3       25539.14**       142116.38**       20.31**         3       2907.98**       3353.52**       0.48**         9       580.66**       615.91**       0.09** |

\* Significant at 5% level of probability \*\* Significant at 1% level of probability

ns: Not significant

**Appendix II.** Cost of production of broccoli per hectare under different treatment combinations

|    | Items of costs                                        | Cost (Tk |
|----|-------------------------------------------------------|----------|
| 1. | Non material costs                                    |          |
| a) | Land preparation including removal of weeds, stubbles | 3000/-   |
| b) | Making irrigation channel and drains                  | 500/-    |
| c) | Making seedbed for seedling raising                   | 250/-    |
| d) | Seedling transplanting                                | 2000/-   |
| e) | Weeding, mulching and earthing up                     | 2500/-   |
| f) | Bird driving                                          | 3000/-   |
| g) | Spraying of insecticides and fungicides               | 350/-    |
| n) | Spreading of manures and fertilizers                  | 2000/-   |
| i) | Harvesting and transplanting                          | 3000/-   |
|    | Total non material cost                               | 16600/-  |
| 2. | Material costs                                        |          |
| a) | Seeds                                                 | 800/-    |
| b) | Manures and fertilizers :                             | 10000/-  |
|    | Cowdung- 20 t/ha (500 t/t)                            | 2800/-   |
|    | MP @200 kg/ha @14 t/kg                                |          |
| c) | Irrigation water                                      | 2500/-   |
| d) | Insecticides and fungicides                           | 2000/-   |
|    | Total material cost                                   | 18100/-  |
|    | Total input cost                                      | 34700/-  |
|    |                                                       |          |

49

# Appendix II (Contd.). Cost of production of broccoli per hectare under different treatment combinations

| Treatments                    | Variable       | cost (Taka)     |                |                               | Overhead co                         | ost (Taka)                         |                   | Total cost of       |
|-------------------------------|----------------|-----------------|----------------|-------------------------------|-------------------------------------|------------------------------------|-------------------|---------------------|
|                               | Input<br>cost* | Cost of<br>urea | Cost of<br>TSP | Total<br>variable<br>cost (A) | Hiring of<br>land for six<br>months | Interest<br>on running<br>capitals | Total cost<br>(B) | production<br>(A+B) |
| NoPo                          | 34700          | -               | -              | 34700                         | 15000                               | 2256                               | 17255             | 51955               |
| NoP <sub>1</sub>              | 34700          | -               | 5010           | 39710                         | 15000                               | 2581                               | 17581             | 57291               |
| NoP <sub>2</sub>              | 34700          | -               | 7155           | 41855                         | 15000                               | 2721                               | 17721             | 59576               |
| NoP <sub>3</sub>              | 34700          | -               | 9300           | 44000                         | 15000                               | 2860                               | 17860             | 61860               |
| N <sub>1</sub> Po             | 34700          | 1044            | -              | 35744                         | 15000                               | 2323                               | 17323             | 53067               |
| N <sub>1</sub> P <sub>1</sub> | 34700          | 1044            | 5010           | 40754                         | 15000                               | 2649                               | 17649             | 58103               |
| N <sub>1</sub> P <sub>2</sub> | 34700          | 1044            | 7155           | 42899                         | 15000                               | 2788                               | 17788             | 60687               |
| N <sub>1</sub> P <sub>3</sub> | 34700          | 1044            | 9300           | 45044                         | 15000                               | 2928                               | 17928             | 62972               |
| N <sub>2</sub> P <sub>0</sub> | 34700          | 1698            | -              | 36398                         | 15000                               | 2366                               | 17366             | 53764               |
| N <sub>2</sub> P <sub>1</sub> | 34700          | 1698            | 5010           | 41408                         | 15000                               | 2692                               | 17692             | 60000               |
| N <sub>2</sub> P <sub>2</sub> | 34700          | 1698            | 7155           | 43553                         | 15000                               | 2831                               | 17831             | 61384               |
| N <sub>2</sub> P <sub>3</sub> | 34700          | 1698            | 930            | 45698                         | 15000                               | 2970                               | 17970             | 63668               |
| N <sub>3</sub> P <sub>0</sub> | 34700          | 2346            | -              | 37046                         | 15000                               | 2408                               | 17408             | 54454               |
| N <sub>3</sub> P <sub>1</sub> | 34700          | 2346            | 5010           | 42056                         | 15000                               | 2734                               | 17734             | 59790               |
| N <sub>3</sub> P <sub>2</sub> | 34700          | 2346            | 7155           | 44201                         | 15000                               | 2873                               | 17873             | 62074               |
| N <sub>3</sub> P <sub>3</sub> | 34700          | 2346            | 9300           | 46346                         | 15000                               | 3012                               | 18012             | 64358               |

#### B. Total variable and overhead costs

\*Excluding the cost of urea and TSP

Where,

| No | - | 0 kg N /ha  | Ро | = | 0 kg P / ha |
|----|---|-------------|----|---|-------------|
| N1 | Н | 80 kg N/ ha | P1 | = | 70 kg / ha  |
| N2 | = | 130 N/ ha   | P2 | - | 100 kg / ha |
| N3 | = | 150 N /ha   | P3 | = | 130 kg /ha  |

# Appendix III. Monthly record of air temperature, rainfall, relative humidity, soil temperature and Sunshine of the experimental site during the period from October 2005 to March 2006

| Year | Month    | Air temperature ("c) |         |       | Relative        | Rainfall | Soil temperature |                |                |
|------|----------|----------------------|---------|-------|-----------------|----------|------------------|----------------|----------------|
|      |          | Maximum              | Minimum | Mean  | humidity<br>(%) | (mm)     | 5 cm<br>depth    | 10 cm<br>depth | 20 cm<br>depth |
|      | October  | 30.97                | 23.31   | 27.14 | 75.25           | 208      | 16.09            | 17.2           | 17.3           |
| 2005 | November | 29.45                | 18.63   | 24.04 | 69.52           | 00       | 13.8             | 14.4           | 14.8           |
|      | December | 26.85                | 16.23   | 21.54 | 70,61           | 00       | 12.6             | 13.6           | 14.0           |
| 2006 | January  | 24.52                | 13.86   | 19.19 | 68.46           | 04       | 11.3             | 11,3           | 13.0           |
| 2000 | February | 28.88                | 17.98   | 23.43 | 61.04           | 03       | 12.9             | 12.9           | 13.8           |

Source: Bangladesh Meteorological Department (climate division)

Agargoan, Dhaka-1212

Appendix IV. Characteristics of Horticulture Farm soil as analyzed by

Soil Resources Development Institute (SRDI), Khamar Bari,

Farmgate, Dhaka

A. morphological characteristics of the experimental field

| Morphological features | Characteristics                 |
|------------------------|---------------------------------|
| Location               | Horticulture Garden ,SAU, Dhaka |
| AEZ                    | Madhupur Tract (28)             |
| General Soil Type      | Shallow red brown terrace soil  |
| Land type              | High land                       |
| Soil series            | Tejgaon                         |
| Topography             | Fairly leveled                  |
| Flood level            | Above flood level               |
| Drainage               | Well drained                    |
| Cropping pattern       | Fellow – broccoli               |

# B. Physical and chemical properties of the initial soil

| Characteristics                | Value      |
|--------------------------------|------------|
| Partical size analysis         |            |
| % Sand                         | 27         |
| % Silt                         | 43         |
| % clay                         | 30         |
| Textural class                 | silty-clay |
| рН                             | 5.6        |
| Organic carbon (%)             | 0.45       |
| Organic matter (%)             | 0.78       |
| Total N (%)                    | 0.03       |
| Available P (ppm)              | 20.00      |
| Exchangeable K (me/100 g soil) | 0.10       |
| Available S (ppm)              | 45         |

1.10 হাগার and the fay E \* 28781 . .

#### শেরেবাংলা কৃষি বিশ্ববিদ্যালয় শেরেবাংলা নগর ঢাকা-১২০৭।

স্মারক নং-শেকৃবি/ডি.আর(এ)/৩(২৩)/১১/ ৩৪২২

#### তারিখঃ ২৬-১১-২০১১

#### বিজ্ঞস্তি

২৫-১১-২০১১ তারিখে অনুষ্ঠিত ২০১২ শিক্ষাবর্ষের স্নাতক (সম্মান) কোর্সের লেভেল-১ সেমিস্টার-১ এর ভর্তি পরীক্ষার ফলাফল (মেধা, কোটা ও অপেক্ষমান ) তালিকা এতদৃসঙ্গে প্রকাশ করা হলো। ভর্তিযোগ্য প্রার্থীদের নিম্নবর্ণিত শর্তাদি অনুসরণপূর্বক বর্ণিত তারিখে ভর্তি করা হবে। শর্তাদিঃ

- ১। মেধা তালিকায় ও বিভিন্ন কোটায় ভর্তিযোগ্য প্রার্থীদের আগামী ২৭/১১/২০১১ তারিখ সকাল ১০.০০ টা থেকে ০৩/১২/২০১১ তারিখ দুপুর ২.০০ টার মধ্যে ফ্যাকাল্টি পছন্দের অনুক্রম নির্ধারিত ফরমে রেজিস্ট্রার কার্যালয়ে জমা দিতে হবে। উক্ত ফরম বিশ্ববিদ্যালয়ের ওয়েব সাইট (www.sau.edu.bd) এবং রেজিস্ট্রার দণ্ডরে পাওয়া যাবে।
- ২। প্রার্থীর মেধা এবং পছন্দক্রম অনুসারে ফ্যাকাল্টি (কৃষি অনুষদ/এগ্রিবিজনেস ম্যানেজমেন্ট অনুষদ/এনিম্যাল সায়েন্স এন্ড ভেটেরিনারী মেডিসিন অনুষদ) নির্ধারন করা হবে।
- ৩। ভর্তিযোগ্য প্রার্থীদের আগামী ০৪/১২/২০১১ ও ০৫/১২/২০১১ তারিখ সকাল ৯.০০ টা হতে বিকাল ৫.০০ ঘটিকার মধ্যে শেকৃবি'র শিক্ষক কনফারেঙ্গ কক্ষে উপস্থিত থেকে ভর্তি হতে হবে।
- ৪ । অপেক্ষমান তালিকায় রোলনম্বরধারীদের ০৭/১২/২০১১ তারিখ দুপুর ০২:০০ ঘটিকার মধ্যে স্ব-শরীরে উপস্থিত হয়ে রেজিস্ট্রার দপ্তরে স্ব আইডি কার্জ এবং ফ্যাকান্টির পছন্দক্রম জমা দিতে হবে। একই তারিখ বিকাল ৫:০০ ঘটিকায় অপেক্ষমান তালিকা হতে মেধাক্রম অনুসারে ভর্তিযোগ্য প্রার্থীদের তালিকা প্রকাশ করা হবে এবং ০৮/১২/২০১১ তারিখ সকাল ৯:০০ টা হতে বিকাল ৫:০০ ঘটিকার মধ্যে শেকৃবি'র শিক্ষক কনফারেন্স কক্ষে উপস্থিত থেকে ভর্তি হতে হবে।
- ৫। ভর্তির সময় শিক্ষাগত যোগ্যতার সকল মূল সনদপত্র ও ট্রান্সক্রিন্ট, প্রশংসাপত্র, ০৪ কপি সত্যায়িত রঙ্জিন ছবি, সরবরাহকৃত স্ব স্ব আই ডি কার্ড মুক্তিযোদ্ধা সন্তানদের ক্ষেত্রে মুক্তিযোদ্ধা সনদের মূল কপি, উপজাতি, আদিবাসী ও ওয়ার্ড (পোষ্য) দের ক্ষেত্রে উপযুক্ত প্রমাণপত্রের মূল কপি জমা দিতে হবে।
- ৬। প্রার্থী কর্তৃক পরিবেশিত/সরবরাহকৃত কোন তথ্য/ডকুমেন্ট ভুল বা অসত্য প্রমাণিত হলে উক্ত প্রার্থী ভর্তির অযোগ্য বলে গণ্য হবে। এমনকি ভর্তির পরেও কোন তথ্যগত ভুল বা অসত্য ডকুমেন্ট সরবরাহের বিষয় উদঘাটিত হলে ভর্তি বাতিল বলে গণ্য হবে।
- ৭। ভর্তির জন্য আনুমানিক ১০,০০০/- (দশ হাজার) টাকা প্রয়োজন হবে।
- ৮। ০২-০১-২০১২ তারিখ সকাল ১১.০০ টায় বিশ্ববিদ্যালয় অডিটরিয়ামে ডর্তিকৃত ছাত্র-ছাত্রীদের ওরিয়েন্টেশন অনুষ্ঠিত হবে এবং ০৩-০১-২০১২ তারিখ থেকে ক্লাশ শুরু হবে।
- ৯। আবাসিক হলে সীটের অপ্রতুলতা হেতু ভর্তিকৃত ছাত্র-ছাত্রীদের বিশেষ করে ছাত্রীদের হলে সীট বরান্দের আপাততঃ কোন সুযোগ নেই। আবাসিক হলে সীট বরান্দ না পাওয়া পর্যন্ত নিজ দায়িত্বে আবাসনের ব্যবস্থা করতে হবে।

ভাইস-চ্যান্সেলর মহোদয়ের অনুমোদনক্রমে

সংযুক্তঃ ফলাফলের কপি ০৪ পাতা।

(মোহাম্মদ আলী) 24 . ১১ . ১১ রেজিস্ট্রার

#### বিতরণঃ

১। ডীন, কৃষি অনুষদ/এগ্নিবিজনেস ম্যানেজমেন্ট অনুষদ/এনিম্যাল সায়েঙ্গ এন্ড ডেটেরিনারী মেডিসিন অনুষদ /পোষ্ট গ্রাজুয়েট স্টাডিজ, শেকৃবি, ঢাকা।

| ২। প্রফেসর/ড./জনাব                                                               | , চেয়ারম্যান/সদস্য/ |
|----------------------------------------------------------------------------------|----------------------|
| সদস্য-সচিব, স্নাতক (সম্মান) কোর্সে ছাত্র-ছাত্রী ভর্তি কমিটি' ২০১২, শেরুবি, ঢাকা। |                      |
| ৩। বিভাগীয় চেয়ারম্যান (সক্ষ)                                                   | বিভাগ, শেকৃবি, ঢাকা। |
| a structure (many) (state have almost (many)                                     | খেকৰি চাকা।          |

৪। পরিচালক (সকল)/প্রক্টর/হল প্রভোষ্ট (সকল).....

৫। পরীক্ষা নিয়ন্ত্রক /লাইব্রেরীয়ান (ভারপ্রাণ্ড), শেকৃবি, ঢাকা।

৬। আহবায়ক, টেকনিক্যাল উপ-কমিটি' ২০১২, শেকৃবি, ঢাকা।

9 সভাপতি, ওয়েব গাইট উপ-কমিটি, শেকৃবি, ঢাকা।

৮। প্রধান প্রকৌশলী, শেকৃবি, ঢাকা।

৯। চীফ মেডিকেল অফিসার (অ.দা.), শেকৃবি, ঢাকা।

১০। ডেপুটি রেজিস্ট্রার (শিক্ষা)/উপ-পরিচালক (অর্থ ও হিসাব/বাজেট), শেকৃবি, ঢাকা।

১১। খামার তত্ত্বাব্ধায়ক(ভারপ্রাগু)/জনসংযোগ কর্মকর্তা শেকৃবি, ঢাকা।

১২। একান্ত সচিব, ভিসি মহোদয়ের কার্যালয়, শেকৃবি, ঢাকা। (ভিসি মহোদয়ের সদয় অবগতির জন্য)

১৩। সহকারী রেজিস্ট্রার (প্রশাসন/পরিষদ), শেকৃবি, ঢাকা।

১৪। সহকারী পচিালক (অডিট), শেকৃবি, ঢাকা।

১৫। সহকারী রেজিস্ট্রার (স্টোর)/এস্টেট, শেকৃবি, ঢাকা।

১৬। নিরাপন্তা কর্মকর্তা, শেকৃবি, ঢাকা।

১৭। পি.এ. টু ট্রেজারার/রেজিস্ট্রার, শেকৃবি, ঢাকা। (সদয় অকাতির জন্য)

১৮। নোটিশ বোর্ড (সকল), শেকৃবি, ঢাকা। ১৯। অফিস নথি/মহানথি।

H-\Admission 2012\Reselt notish-2012 doc

## Sher-e-Bangla Agricultural University Result of the Admission Test-2012

## Table 1. General Merit List\_Roll Numbers in Order of Merit\_Column-wise:

| 16509 | 11150 | 12520 | 12105 | 14554 | 12204 | 12207 | 10007 | 12076 | 15547 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 16508 | 11159 |       | 12195 | 14554 | 13384 | 13387 | 10007 |       |       |
| 17106 | 13880 | 15243 | 12736 | 14937 | 16113 | 11467 | 10498 | 12770 | 15559 |
| 16150 | 15551 | 13611 | 10938 | 15989 | 10815 | 12445 | 11125 | 13634 | 16763 |
| 14008 | 16960 | 15198 | 12220 | 16531 | 11918 | 13534 | 12337 | 14267 | 17007 |
| 11036 | 17317 | 11809 | 12659 | 11570 | 11931 | 13663 | 13106 | 14974 | 17054 |
| 13532 | 15340 | 14031 | 13032 | 15210 | 14410 | 15423 | 15741 | 16475 | 17231 |
| 13292 | 11209 | 15279 | 15453 | 17595 | 17473 | 15800 | 15909 | 16551 | 13044 |
| 11530 | 12084 | 15869 | 15693 | 14801 | 15590 | 16175 | 17696 | 17256 | 15591 |
| 11421 | 13010 | 12522 | 16594 | 12234 | 10741 | 14426 | 12935 | 17562 | 15019 |
| 16396 | 14005 | 15410 | 17336 | 13758 | 13724 | 12025 | 14738 | 12968 | 15969 |
| 17087 | 15483 | 15536 | 16510 | 16722 | 14398 | 14306 | 16026 | 11776 | 17716 |
| 10716 | 12442 | 15931 | 11709 | 15098 | 15214 | 10086 | 16225 | 11055 | 15841 |
| 11748 | 16186 | 17630 | 12570 | 11417 | 15687 | 13046 | 10729 | 12363 | 15711 |
| 10777 | 10914 | 12196 | 14017 | 11529 | 12521 | 13407 | 12430 | 10832 | 11721 |
| 12728 | 11882 | 14578 | 14071 | 16099 | 10148 | 14833 | 13670 | 16138 | 12748 |
| 14097 | 11866 | 14816 | 14293 | 10768 | 12788 | 15722 | 15002 | 13687 | 10211 |
| 12787 | 12024 | 15494 | 14776 | 11554 | 14421 | 15965 | 15701 | 15161 | 10262 |
| 14516 | 12252 | 11079 | 17582 | 12661 | 14618 | 16105 | 11557 | 10783 | 11258 |
| 14656 | 14765 | 10388 | 14178 | 13059 | 16855 | 16754 | 10326 | 13226 | 13513 |
| 14889 | 10445 | 17550 | 13062 | 15134 | 15689 | 10320 | 11515 | 13698 | 13681 |
| 13224 | 13163 | 10712 | 14900 | 15153 | 13607 | 11300 | 13951 | 16482 | 14018 |
| 12325 | 13241 | 15855 | 11766 | 15367 | 11484 | 12070 | 13973 | 17483 | 15146 |
| 11333 | 11377 | 14958 | 13862 | 15405 | 12099 | 14207 | 14505 | 10603 | 15191 |
| 12340 | 12582 | 15141 | 14002 | 16303 | 15126 | 14504 | 15614 | 12596 | 15424 |
| 14437 | 15676 | 16012 | 14799 | 13974 | 15376 | 15510 | 17365 | 13291 | 16421 |
| 15246 | 17079 | 16472 | 14988 | 12496 | 16201 | 15688 | 12044 | 10612 | 17421 |
| 12650 | 17086 | 11398 | 15264 | 10368 | 17617 | 17702 | 15169 | 10744 | 13314 |
| 13402 | 12924 | 15478 | 10093 | 12268 | 15144 | 14629 | 13812 | 13033 | 10432 |
| 15352 | 13591 | 11772 | 12129 | 12638 | 15479 | 12683 | 15102 | 13278 | 15541 |
| 15572 | 15897 | 12063 | 12891 | 12858 | 14346 | 11216 | 10863 | 13597 | 17379 |

Page 1 of 4 2

R 2

Chel Digge

| 15395 | 12217 | 12669 | 11932 | 17340 | 16882 | 17220 | 15734 | 14761 | 10561 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 10100 | 12660 | 13330 | 11947 | 12855 | 10994 | 17316 | 15767 | 15858 | 10985 |
| 10215 | 13294 | 13929 | 12254 | 14758 | 11422 | 17353 | 16011 | 14354 | 11350 |
| 10751 | 13298 | 14114 | 12952 | 10467 | 14044 | 17567 | 16221 | 12253 | 11930 |
| 11747 | 13716 | 14449 | 14795 | 12060 | 15503 | 16127 | 16455 | 13901 | 12225 |
| 12498 | 15124 | 14748 | 15056 | 14024 | 11862 | 13613 | 16845 | 14957 | 12651 |
| 13377 | 15489 | 14867 | 15219 | 13347 | 10279 | 16137 | 14634 | 11249 | 12928 |
| 15456 | 12330 | 15396 | 16940 | 10566 | 10487 | 15692 | 11117 | 11349 | 13656 |
| 16776 | 13878 | 15904 | 17427 | 10902 | 11269 | 16972 | 12543 | 13884 | 15195 |
| 11808 | 17280 | 17429 | 16400 | 11770 | 12295 | 14728 | 17432 | 14967 | 15438 |
| 16191 | 12368 | 17658 | 10569 | 11953 | 12444 | 10571 | 11677 | 15351 |       |
| 11174 | 16109 | 12200 | 11499 | 12526 | 13433 | 12339 | 14362 | 15378 |       |
| 12554 | 16957 | 12394 | 12509 | 12744 | 14261 | 13198 | 10912 | 15898 |       |
| 15838 | 10312 | 13084 | 13993 | 15159 | 14450 | 13897 | 11865 | 17018 |       |
| 16202 | 10805 | 13772 | 14854 | 17568 | 14960 | 14033 | 12020 | 17566 |       |
| 10194 | 11561 | 13871 | 15751 | 12199 | 15104 | 14920 | 12566 | 11142 |       |
| 13905 | 11989 | 16313 | 16436 | 12581 | 16895 | 15484 | 13898 | 11517 |       |
| 14487 | 12593 | 15671 | 16614 | 16439 | 17100 | 15499 | 14558 | 16483 |       |

Table 1 Cont.. General Merit List\_Roll Numbers in Order of Merit\_Column-wise:

Table 2. Quota\_Roll Numbers in Order of Merit\_ Column-wise:

|       | Free  | dom Fig | hter  |       | Tribe/Aborigin | Ward  |
|-------|-------|---------|-------|-------|----------------|-------|
| 13864 | 13585 | 17689   | 17456 | 13245 | 17116          | 10127 |
| 14970 | 13907 | 12848   | 12905 | 14366 | 13486          |       |
| 12111 | 11208 | 11218   | 10952 | 12414 |                |       |
| 10835 | 10064 | 15393   | 14372 | 16747 |                |       |
| 14014 | 17431 | 12121   | 12534 | 14435 |                |       |

Page 2 of 4

| 15745 | 10872 | 13382 | 13562 | 11501 | 17081 | 14392 | 13612 | 15239 | 10267 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 16386 | 11232 | 13643 | 15273 | 12823 | 12152 | 10764 | 14027 | 14009 | 11065 |
| 17235 | 11315 | 13865 | 17157 | 13729 | 12607 | 10838 | 14263 | 10650 | 11111 |
| 17523 | 11767 | 14170 | 11688 | 14521 | 13186 | 10895 | 14289 | 10898 | 11146 |
| 10111 | 11912 | 17142 | 11868 | 14731 | 15359 | 10905 | 14456 | 12159 | 11296 |
| 15626 | 12503 | 17282 | 13309 | 14944 | 13252 | 12338 | 15427 | 11695 | 12016 |
| 13735 | 12755 | 14473 | 13529 | 15520 | 17041 | 12760 | 15699 | 10515 | 12050 |
| 15511 | 13432 | 13766 | 13864 | 16348 | 17363 | 13271 | 16639 | 11447 | 12466 |
| 16369 | 14303 | 11877 | 14831 | 16713 | 10083 | 13583 | 16726 | 11948 | 12572 |
| 10174 | 14571 | 14919 | 15416 | 16876 | 10610 | 13722 | 17146 | 12058 | 12605 |
| 11224 | 14587 | 15135 | 15663 | 16908 | 10772 | 13791 | 16585 | 12148 | 12699 |
| 11739 | 14720 | 12475 | 16446 | 17442 | 11720 | 13954 | 14382 | 12304 | 13595 |
| 13765 | 14750 | 12474 | 16687 | 15347 | 12564 | 14712 | 15731 | 12789 | 15211 |
| 14298 | 14835 | 13546 | 17477 | 16040 | 12711 | 14902 | 11724 | 12988 | 15568 |
| 15518 | 15030 | 16748 | 17587 | 12646 | 12717 | 15194 | 17371 | 13351 | 15647 |
| 16073 | 15604 | 11887 | 15971 | 16655 | 14065 | 15504 | 10876 | 13358 | 15683 |
| 16231 | 15737 | 12319 | 16031 | 11528 | 14180 | 16547 | 17638 | 14598 | 17262 |
| 17034 | 15805 | 12960 | 16836 | 11599 | 14311 | 17147 | 15248 | 15500 | 17338 |
| 17189 | 16007 | 12965 | 11437 | 13302 | 14874 | 13246 | 12018 | 16027 | 17352 |
| 17439 | 16213 | 13484 | 16721 | 10519 | 14966 | 15999 | 11788 | 16077 | 17729 |
| 16279 | 16226 | 13540 | 14605 | 11650 | 15034 | 16206 | 12281 | 16536 | 11132 |
| 10995 | 17359 | 14834 | 10907 | 11834 | 15850 | 14406 | 12420 | 17334 | 13959 |
| 14969 | 14401 | 15106 | 17261 | 13111 | 16911 | 12713 | 12814 | 17693 | 17134 |
| 17479 | 14543 | 15349 | 15006 | 13814 | 16694 | 17418 | 13287 | 14823 | 13180 |
| 11311 | 14448 | 15517 | 14196 | 14353 | 16015 | 13983 | 13564 | 10568 | 15053 |
| 15666 | 14936 | 10942 | 16304 | 14374 | 15095 | 11493 | 13852 | 14922 | 16958 |
| 17596 | 15325 | 14135 | 10454 | 14947 | 14970 | 15936 | 14713 | 14931 | 10835 |
| 13913 | 12244 | 15880 | 10654 | 16146 | 17641 | 16804 | 15460 | 17069 | 10877 |
| 16366 | 10329 | 16449 | 10673 | 16659 | 12111 | 11816 | 16652 | 14649 | 13469 |
| 10427 | 11943 | 11595 | 11323 | 16829 | 10128 | 13312 | 16888 | 17053 | 17194 |

Table 3. General Waiting List\_Roll Numbers in Order of Merit\_ Column-wise:

22/22

Page 3 of 4

26, 11. 11 96, 11. 11 26, 11. 11

>>

| 14247 | 15129 | 12068 | 14841 | 14308 | 14103 | 15027 | 15842 | 14880 | 13569 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 14774 | 10492 | 12065 | 13984 | 15847 | 16775 | 15529 | 10138 | 15412 | 14535 |
| 12490 | 10926 | 10354 | 10578 | 17267 | 17075 | 16645 | 11669 | 15794 | 14983 |
| 17115 | 11014 | 11722 | 11471 | 16038 | 13253 | 17035 | 12203 | 16416 | 15637 |
| 12231 | 11991 | 12110 | 11790 | 12927 | 13523 | 17046 | 10330 | 16474 | 15801 |
| 13303 | 12315 | 12726 | 13202 | 13501 | 15627 | 17150 | 10335 | 17274 | 16129 |
| 13316 | 13463 | 12949 | 13227 | 15747 | 10202 | 17406 | 11208 | 17513 | 16290 |
| 13970 | 14811 | 13392 | 15485 | 11520 | 10984 | 17519 | 11387 | 12978 | 16481 |
| 14014 | 14911 | 13815 | 15824 | 11906 | 11334 | 17678 | 11415 | 16867 | 16558 |
| 14434 | 14948 | 14019 | 15990 | 11979 | 11552 | 14766 | 11870 | 15445 | 16683 |
| 14859 | 15371 | 14059 | 15998 | 12003 | 12116 | 15233 | 11927 | 16658 | 17540 |
| 15667 | 16325 | 14945 | 16080 | 12763 | 12647 | 12411 | 12751 | 10144 | 17309 |
| 16070 | 16707 | 15155 | 16230 | 14060 | 13786 | 12708 | 13438 | 11379 | 12232 |
| 16363 | 17719 | 16741 | 16734 | 14335 | 13907 | 13429 | 13665 | 14012 | 16238 |
| 17505 | 12786 | 17097 | 16992 | 15825 | 14375 | 16042 | 13911 | 17687 | 16021 |
| 17531 | 13585 | 17141 | 12011 | 16494 | 14463 | 16399 | 14028 | 10576 | 13366 |
| 11089 | 14266 | 17525 | 11000 | 11875 | 14627 | 13420 | 14351 | 11141 | 11147 |
| 17563 | 16128 | 12014 | 14352 | 14010 | 14708 | 11351 | 14645 | 12100 | 15162 |
| 11939 | 15798 | 13491 | 17564 | 14514 | 14747 | 13960 | 14812 | 12171 | 10358 |
| 10941 | 13064 | 11516 | 12981 | 10314 | 14751 | 14467 | 14878 | 13336 | 10671 |

# Table 3 Cont.. General Waiting List\_Roll Nos. in Order of Merit\_ Column-wise:

# Table 4. Quota\_Waiting List\_Roll Numbers Merit-wise:

| Freedom Fighter:  | 16450 | 17705 | 15552 | 15274 | 13813 | 15442 |
|-------------------|-------|-------|-------|-------|-------|-------|
| Tribe/Aboriginal: | Nil   |       |       |       |       |       |
| Ward:             | Nil   |       |       |       |       |       |

Page 4 of 4

5.02

22/22

শেরেবাংলা কৃষি বিশ্ববিদ্যালয় শেরে বাংলা নগর, ঢাকা-১২০৭ লেভেল ১, সেমিস্টার ১ ভর্তি পরীক্ষা-২০১২

# অনুষদ পছন্দের অনুক্রম

বর্তমানে শেরেবাংলা কৃষি বিশ্ববিদ্যালয়ে তিনটি অনুষদ রয়েছে, যথা (ক) কৃষি অনুষদ, (খ) এগ্রিবিজনেস ম্যানেজমেন্ট অনুষদ এবং (গ) এনিম্যাল সয়েন্স এন্ড ভেটেরিনারি মেডিসিন অনুষদ।

| ১ম পছন্দ:             |                    |
|-----------------------|--------------------|
| ২য় পছন্দ:            |                    |
| ৩য় পছন্দ:            |                    |
| ভর্তি পরীক্ষার রোল নং | প্রার্থীর স্বাক্ষর |

# শেরেবাংলা কৃষি বিশ্ববিদ্যালয় শেরে বাংলা নগর, ঢাকা-১২০৭ লেভেল ১, সেমিস্টার ১ ভর্তি পরীক্ষা-২০১২

# অনুষদ পছন্দের অনুক্রম

বর্তমানে শেরেবাংলা কৃষি বিশ্ববিদ্যালয়ে তিনটি অনুষদ রয়েছে, যথা (ক) কৃষি অনুষদ, (খ) এগ্রিবিজনেস ম্যানেজমেন্ট অনুষদ এবং (গ) এনিম্যাল সয়েন্স এন্ড ভেটেরিনারি মেডিসিন অনুষদ।

| ১ম পছন্দ:             |                    |
|-----------------------|--------------------|
| ২য় পছন্দ:            |                    |
| ৩য় পছন্দ:            |                    |
| ভর্তি পরীক্ষার রোল নং | প্রার্থীর স্বাক্ষর |